Main Page: Difference between revisions

From Physics Book
Jump to navigation Jump to search
Tag: Manual revert
 
(338 intermediate revisions by 57 users not shown)
Line 1: Line 1:
__NOTOC__
__NOTOC__
= '''Georgia Tech Student Wiki for Introductory Physics.''' =
= '''Georgia Tech Student Wiki for Introductory Physics.''' =
Line 16: Line 17:
* A wiki written for students by a physics expert [http://p3server.pa.msu.edu/coursewiki/doku.php?id=183_notes MSU Physics Wiki]
* A wiki written for students by a physics expert [http://p3server.pa.msu.edu/coursewiki/doku.php?id=183_notes MSU Physics Wiki]
* A wiki book on modern physics [https://en.wikibooks.org/wiki/Modern_Physics Modern Physics Wiki]
* A wiki book on modern physics [https://en.wikibooks.org/wiki/Modern_Physics Modern Physics Wiki]
* A collection of 26 volumes of lecture notes by Prof. Wheeler of Reed College [https://rdc.reed.edu/c/wheeler/home/]
* The MIT open courseware for intro physics [http://ocw.mit.edu/resources/res-8-002-a-wikitextbook-for-introductory-mechanics-fall-2009/index.htm MITOCW Wiki]
* The MIT open courseware for intro physics [http://ocw.mit.edu/resources/res-8-002-a-wikitextbook-for-introductory-mechanics-fall-2009/index.htm MITOCW Wiki]
* An online concept map of intro physics [http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html HyperPhysics]
* An online concept map of intro physics [http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html HyperPhysics]
Line 23: Line 25:
* A resource guide compiled by the [http://www.aapt.org/ AAPT] for educators [http://www.compadre.org/ ComPADRE]
* A resource guide compiled by the [http://www.aapt.org/ AAPT] for educators [http://www.compadre.org/ ComPADRE]
* The Feynman lectures on physics are free to read [http://www.feynmanlectures.caltech.edu/ Feynman]
* The Feynman lectures on physics are free to read [http://www.feynmanlectures.caltech.edu/ Feynman]
* Final Study Guide for Modern Physics II created by a lab TA [https://docs.google.com/document/d/1_6GktDPq5tiNFFYs_ZjgjxBAWVQYaXp_2Imha4_nSyc/edit?usp=sharing Modern Physics II Final Study Guide]


== Resources ==
== Resources ==
Line 28: Line 31:
* A guide to representing equations in math mode [https://en.wikipedia.org/wiki/Help:Displaying_a_formula Wiki Math Mode]
* A guide to representing equations in math mode [https://en.wikipedia.org/wiki/Help:Displaying_a_formula Wiki Math Mode]
* A page to keep track of all the physics [[Constants]]
* A page to keep track of all the physics [[Constants]]
* A page for review of [[Vectors]] and vector operations
* A listing of [[Notable Scientist]] with links to their individual pages  
* A listing of [[Notable Scientist]] with links to their individual pages  




<div style="float:left; width:30%; padding:1%;">
<div style="float:left; width:30%; padding:1%;">
==Physics 1==
==Physics 1==
===Week 1===
===Week 1===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Help with VPython====
====GlowScript 101====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Python Syntax]]
*[[Python Syntax]]
</div>
*[[GlowScript]]
</div>
 
<div class="toccolours mw-collapsible mw-collapsed">
 
====Vectors and Units====
 
 
 
 
<div class="mw-collapsible-content">
*[[Vectors]]
*[[SI Units]]
</div>
</div>
</div>
</div>
Line 97: Line 88:
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Newton's First Law of Motion]]
*[[Newton's First Law of Motion]]
*[[Mass]]
*[[Velocity]]
*[[Velocity]]
*[[Mass]]
*[[Speed]]
*[[Speed and Velocity]]
*[[Speed vs Velocity]]
*[[Relative Velocity]]
*[[Relative Velocity]]
*[[Derivation of Average Velocity]]
*[[Derivation of Average Velocity]]
Line 111: Line 103:
====Momentum and the Momentum Principle====
====Momentum and the Momentum Principle====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Momentum Principle]]
*[[Linear Momentum]]
*[[Newton's Second Law: the Momentum Principle]]
*[[Impulse and Momentum]]
*[[Net Force]]
*[[Inertia]]
*[[Inertia]]
*[[Net Force]]
*[[Derivation of the Momentum Principle]]
*[[Impulse Momentum]]
*[[Acceleration]]
*[[Acceleration]]
*[[Momentum with respect to external Forces]]
*[[Relativistic Momentum]]
*[[Relativistic Momentum]]
<!-- Kinematics and Projectile Motion relocated to Week 3 per advice of Dr. Greco -->
</div>
</div>
</div>
</div>
Line 126: Line 118:
====Iterative Prediction with a Constant Force====
====Iterative Prediction with a Constant Force====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Newton’s Second Law of Motion]]
*[[Iterative Prediction]]
*[[Iterative Prediction]]
*[[Kinematics]]
*[[Newton’s Laws and Linear Momentum]]
*[[Projectile Motion]]
</div>
</div>
</div>
</div>
Line 139: Line 127:
====Analytic Prediction with a Constant Force====
====Analytic Prediction with a Constant Force====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Analytical Prediction]]
<!-- *[[Analytical Prediction]] Deprecated -->
*[[Kinematics]]
*[[Projectile Motion]]
</div>
</div>
</div>
</div>
Line 147: Line 137:
====Iterative Prediction with a Varying Force====
====Iterative Prediction with a Varying Force====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Predicting Change in multiple dimensions]]
*[[Fundamentals of Iterative Prediction with Varying Force]]
*[[Spring Force]]
*[[Spring_Force]]
*[[Hooke's Law]]
*[[Simple Harmonic Motion]]
*[[Simple Harmonic Motion]]
<!--*[[Hooke's Law]] folded into simple harmonic motion-->
<!--*[[Spring Force]] folded into simple harmonic motion-->
*[[Iterative Prediction of Spring-Mass System]]
*[[Iterative Prediction of Spring-Mass System]]
*[[Terminal Speed]]
*[[Terminal Speed]]
*[[Predicting Change in multiple dimensions]]
*[[Two Dimensional Harmonic Motion]]
*[[Determinism]]
*[[Determinism]]
</div>
</div>
Line 161: Line 154:
====Fundamental Interactions====
====Fundamental Interactions====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
==Main Idea==
*[[Gravitational Force]]
*[[Gravitational Force]]
*[[Fluid Mechanics]]
*[[Gravitational Force Near Earth]]
*[[An Application of Gravitational Potential]]
*[[Gravitational Force in Space and Other Applications]]
*[[3 or More Body Interactions]]
<!--[[Fluid Mechanics]]-->
*[[Electric Force]]
*[[Electric Force]]
*[[Introduction to Magnetic Force]]
*[[Strong and Weak Force]]
*[[Reciprocity]]
*[[Reciprocity]]
*[[Conservation of Momentum]]
</div>
</div>
</div>
</div>
Line 174: Line 169:
===Week 5===
===Week 5===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Conservation of Momentum====
<div class="mw-collapsible-content">
*[[Conservation of Momentum]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Properties of Matter====
====Properties of Matter====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
Line 221: Line 209:
===Week 7===
===Week 7===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Jeet Bhatkar====
====Energy Principle====
====Energy Principle====
The Energy Principle is a fundamental concept in physics that describes the relationship between different forms of energy and their conservation within a system. Understanding the Energy Principle is crucial for analyzing the motion and interactions of objects in various physical scenarios.
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Kinetic Energy]]
Kinetic energy is the energy an object possesses due to its motion.
*[[Work/Energy]]
Potential energy arises from the position of an object relative to its surroundings. Common forms of potential energy include gravitational potential energy and elastic potential energy.
*[[The Energy Principle]]
*[[The Energy Principle]]
Work and energy are closely related concepts. Work (
𝑊) done on an object is defined as the force (
𝐹) applied to the object multiplied by the displacement (
𝑑) of the object in the direction of the force:
The Energy Principle states that the total mechanical energy of a system remains constant if only conservative forces (forces that depend only on the positions of the objects) are acting on the system.
*[[Conservation of Energy]]
*[[Conservation of Energy]]
*[[Kinetic Energy]]
The principle of conservation of energy states that the total energy of an isolated system remains constant over time. In other words, energy cannot be created or destroyed, only transformed from one form to another. This principle is a fundamental concept in physics and has wide-ranging applications in mechanics, thermodynamics, and other branches of science.
*[[Work]]
*[[Power (Mechanical)]]
</div>
</div>
</div>
</div>
Line 257: Line 256:
*[[Center of Mass]]
*[[Center of Mass]]
*[[Multi-particle analysis of Momentum]]
*[[Multi-particle analysis of Momentum]]
*[[Momentum with respect to external Forces]]
*[[Potential Energy of a Multiparticle System]]
*[[Potential Energy of a Multiparticle System]]
*[[Work and Energy for an Extended System]]
*[[Work and Energy for an Extended System]]
Line 273: Line 271:
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Thermal Energy, Dissipation and Transfer of Energy====
====Thermal Energy, Dissipation, and Transfer of Energy====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Thermal Energy]]
*[[Thermal Energy]]
*[[Specific Heat]]
*[[Specific Heat]]
*[[Heat Capacity]]
*[[Calorific Value(Heat of combustion)]]
*[[Calorific Value(Heat of combustion)]]
*[[Specific Heat Capacity]]
*[[First Law of Thermodynamics]]
*[[First Law of Thermodynamics]]
*[[Second Law of Thermodynamics and Entropy]]
*[[Second Law of Thermodynamics and Entropy]]
*[[Temperature]]
*[[Temperature]]
*[[Predicting Change]]
*[[Energy Transfer due to a Temperature Difference]]
*[[Transformation of Energy]]
*[[Transformation of Energy]]
*[[The Maxwell-Boltzmann Distribution]]
*[[The Maxwell-Boltzmann Distribution]]
*[[Air Resistance]]
*[[Air Resistance]]
*[[The Third Law of Thermodynamics]]
</div>
</div>
</div>
</div>
Line 295: Line 290:
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Translational, Rotational and Vibrational Energy]]
*[[Translational, Rotational and Vibrational Energy]]
*[[Rolling Motion]]
</div>
</div>
</div>
</div>
Line 307: Line 303:
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Models of Friction====
====Friction====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Friction]]
*[[Friction]]
*[[Static Friction]]
*[[Static Friction]]
*[[Kinetic Friction]]
</div>
</div>
</div>
</div>


===Week 12===
===Week 12===
<div class="toccolours mw-collapsible mw-collapsed">
====Conservation of Momentum====
<div class="mw-collapsible-content">
*[[Conservation of Momentum]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Collisions====
====Collisions====
Line 335: Line 338:
====Rotations====
====Rotations====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Rotation]]
*[[Rotational Kinematics]]
*[[Angular Velocity]]
*[[Eulerian Angles]]
*[[Eulerian Angles]]
</div>
</div>
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Angular Momentum====
====Angular Momentum====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
Line 347: Line 350:
*[[Rotational Angular Momentum]]
*[[Rotational Angular Momentum]]
*[[The Angular Momentum Principle]]
*[[The Angular Momentum Principle]]
*[[Angular Momentum Compared to Linear Momentum]]
*[[Angular Impulse]]
*[[Angular Impulse]]
*[[Predicting the Position of a Rotating System]]
*[[Predicting the Position of a Rotating System]]
*[[Angular Momentum of Multiparticle Systems]]
*[[The Moments of Inertia]]
*[[The Moments of Inertia]]
*[[Moment of Inertia for a cylinder]]
*[[Right Hand Rule]]
*[[Right Hand Rule]]
</div>
</div>
Line 377: Line 377:
*[[Energy graphs and the Bohr model]]
*[[Energy graphs and the Bohr model]]
*[[Quantized energy levels]]
*[[Quantized energy levels]]
*[[Quantized energy levels part II]]
*[[Electron transitions]]
*[[Entropy]]
*[[Entropy]]
</div>
</div>
Line 389: Line 389:
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====3D Vectors====
====3D Vectors====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Vectors]]
*[[Vectors]]
Line 407: Line 408:
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">


====Electric force====
== Electric force ==
<div class="mw-collapsible-content">
'''Jeet Bhatkar – Fall 2025'''
*[[Electric Force]]
 
*[[Lorentz Force]]
== Big Idea ==
</div>
Electric force is the interaction between objects that have electric charge. It is:
</div>
 
* '''Long-range''': acts even when charges do not touch 
* '''Vector-valued''': has magnitude and direction 
* '''Superposable''': forces from many charges add as vectors 
 
At the intro level, the electric force between two point charges is described by Coulomb’s law, the electrostatic analog of the gravitational force between masses.
 
== Key Equations ==
 
'''Coulomb’s Law (magnitude)'''
:[math]\displaystyle{ F = k \dfrac{|q_1 q_2|}{r^2} }[/math]
 
* [math]\displaystyle{F}[/math] = magnitude of the electric force 
* [math]\displaystyle{k \approx 8.99 \times 10^9\ \text{N·m}^2/\text{C}^2}[/math] 
* [math]\displaystyle{q_1, q_2}[/math] = charges (C) 
* [math]\displaystyle{r}[/math] = separation between the charges (m)
 
'''Coulomb’s Law (vector form)'''
:[math]\displaystyle{ \vec{F}_{2 \leftarrow 1} = k \dfrac{q_1 q_2}{r^2} \,\hat{r}_{2 \leftarrow 1} }[/math]
 
* [math]\displaystyle{\vec{F}_{2 \leftarrow 1}}[/math] = force on charge 2 due to charge 1 
* [math]\displaystyle{\hat{r}_{2 \leftarrow 1}}[/math] = unit vector from 1 to 2 
 
'''Relation to Electric Field'''
:[math]\displaystyle{ \vec{F} = q \vec{E} }[/math]
 
Once you know [math]\displaystyle{\vec{E}}[/math] at a point, you can find the force on any charge [math]\displaystyle{q}[/math] placed there.
 
== Conceptual Picture ==
 
'''Sign of charges'''
* Like charges (both positive or both negative) → '''repel''' 
* Unlike charges (one positive, one negative) → '''attract'''
 
'''Distance dependence'''
* Force falls off as [math]\displaystyle{1/r^2}[/math], so doubling the distance makes the force 4 times smaller.
 
'''Superposition principle'''
If there are many charges, the net force on a given charge is the vector sum of the forces from each individual charge:
[math]\displaystyle{ \vec{F}_\text{net} = \sum_i \vec{F}_i }[/math].
 
'''Electric vs. gravitational force'''
* Both follow inverse-square laws 
* Gravity is always attractive; electric force can be attractive or repulsive 
* Electric forces are usually much stronger at the particle scale 
 
== Worked Example 1: Two Point Charges on a Line ==
 
'''Problem.''' 
Two charges are placed on the x-axis:
 
* [math]\displaystyle{q_1 = +3.0\ \mu\text{C}}[/math] at [math]\displaystyle{x = 0.00\ \text{m}}[/math] 
* [math]\displaystyle{q_2 = -2.0\ \mu\text{C}}[/math] at [math]\displaystyle{x = 0.40\ \text{m}}[/math] 
 
What is the magnitude and direction of the force on [math]\displaystyle{q_2}[/math]?
 
'''Solution (outline).'''
 
# Distance between charges: 
[math]\displaystyle{ r = 0.40\ \text{m} }[/math].
 
# Magnitude using Coulomb’s law: 
[math]\displaystyle{
F = k \dfrac{|q_1 q_2|}{r^2}
= (8.99 \times 10^9)\,\dfrac{(3.0 \times 10^{-6})(2.0 \times 10^{-6})}{(0.40)^2}
}[/math]
 
# Sign and direction: 
* [math]\displaystyle{q_1}[/math] is positive, [math]\displaystyle{q_2}[/math] is negative → force is '''attractive''' 
* On [math]\displaystyle{q_2}[/math], the force points toward [math]\displaystyle{q_1}[/math] 
* Since [math]\displaystyle{q_1}[/math] is at smaller x, the force on [math]\displaystyle{q_2}[/math] points in the '''−x''' direction 
 
You can finish by computing the numerical value and writing it as a vector, e.g. [math]\displaystyle{\vec{F}_{2 \leftarrow 1} = -F\,\hat{x}}[/math].
 
== Worked Example 2: Superposition with Three Charges ==
 
'''Problem.''' 
Three equal charges [math]\displaystyle{q}[/math] are at the corners of an equilateral triangle of side [math]\displaystyle{a}[/math]. What is the net force on one of the charges?
 
'''Idea (no full algebra).'''
 
* Each of the other two charges exerts a force of magnitude 
  [math]\displaystyle{ F = k \dfrac{q^2}{a^2} }[/math] 
* The angle between these two forces is [math]\displaystyle{60^\circ}[/math] 
* Use vector addition: 
  * Add components along the symmetry axis 
  * Perpendicular components cancel by symmetry 
 
This shows how symmetry plus superposition simplify the vector addition.
 
== Computational Model (GlowScript) ==
 
Below is a simple GlowScript (VPython) model that computes and visualizes the electric force between two point charges in 3D.
 
You can:
* Paste this into a new GlowScript Trinket (Python / VPython),
* Get the embed code from Trinket,
* Embed that code into this page so it runs directly here.
 
<syntaxhighlight lang="python">
from vpython import *
 
# constant
k = 8.99e9  # N·m^2/C^2
 
# scene setup
scene.caption = "Drag the red charge to see how the force on the blue charge changes.\n"
 
# charges (positions in meters, charges in coulombs)
q1 = 2e-6  # C (blue, fixed)
q2 = -3e-6  # C (red, movable)
 
charge1 = sphere(pos=vector(-0.5, 0, 0), radius=0.05, color=color.blue)
charge2 = sphere(pos=vector(0.5, 0, 0), radius=0.05, color=color.red, make_trail=True)
 
# arrow to show force on q2 due to q1
F_arrow = arrow(pos=charge2.pos, axis=vector(0.2, 0, 0))
 
def electric_force(q1, q2, r1, r2):
    r_vec = r2 - r1
    r = mag(r_vec)
    if r == 0:
        return vector(0, 0, 0)
    F_mag = k * q1 * q2 / r**2
    return F_mag * norm(r_vec)
 
dragging = False
 
def down():
    global dragging
    if scene.mouse.pick is charge2:
        dragging = True
 
def up():
    global dragging
    dragging = False
 
scene.bind("mousedown", lambda evt: down())
scene.bind("mouseup",  lambda evt: up())
 
while True:
    rate(60)
 
    if dragging:
        # move the red charge with the mouse in the x-y plane
        m = scene.mouse.pos
        charge2.pos = vector(m.x, m.y, 0)
 
    F = electric_force(q1, q2, charge1.pos, charge2.pos)
 
    # update arrow to show force on q2
    F_arrow.pos = charge2.pos
    # scale arrow length for visibility (purely visual)
    F_arrow.axis = F * 1e7
</syntaxhighlight>
 
You can extend this model to include more charges or show the net force on a test charge at different locations.
 
== Common Mistakes and How to Avoid Them ==
 
* '''Forgetting that force is a vector.''' 
  Always draw a diagram and keep track of directions. Use components in 2D/3D.
* '''Dropping the absolute value in the magnitude formula.''' 
  [math]\displaystyle{ F = k \dfrac{|q_1 q_2|}{r^2} }[/math] is a positive magnitude. Decide direction separately.
* '''Mixing up [math]\displaystyle{r}[/math] and [math]\displaystyle{r^2}[/math].''' 
  The force goes like [math]\displaystyle{1/r^2}[/math], not [math]\displaystyle{1/r}[/math].
* '''Using wrong units.''' 
  Convert microcoulombs to coulombs, centimeters to meters, etc. 
  [math]\displaystyle{1\ \mu\text{C} = 1 \times 10^{-6}\ \text{C}}[/math].
* '''Trying to memorize instead of understand.''' 
  Focus on inverse-square behavior, sign of charges, and superposition.
 
== Connections to Other Topics ==
 
* '''Electric Field''' – Electric force per unit charge is the electric field: 
  [math]\displaystyle{ \vec{E} = \dfrac{\vec{F}}{q} }[/math].
* '''Potential Energy and Electric Potential''' – Work done by electric forces leads to electric potential energy and voltage.
* '''Lorentz Force''' – The full force on a moving charge also includes magnetic fields: 
  [math]\displaystyle{ \vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) }[/math]
  This page focuses on the electric part.
 
== Practice Problems ==
 
You can add your own numerical values and solve them. Consider including full solutions in a collapsible section.
 
# Two charges of [math]\displaystyle{+2.0\ \mu\text{C}}[/math] and [math]\displaystyle{+5.0\ \mu\text{C}}[/math] are 0.30 m apart. 
  * (a) Find the magnitude of the force on each charge. 
  * (b) Is the force attractive or repulsive? Explain.
 
# A charge [math]\displaystyle{q_1 = +4.0\ \mu\text{C}}[/math] is at the origin and [math]\displaystyle{q_2 = -1.0\ \mu\text{C}}[/math] is at [math]\displaystyle{x = 0.20\ \text{m}}[/math]. 
  * Find the electric force on [math]\displaystyle{q_1}[/math] (magnitude and direction). 
  * Verify that Newton’s third law holds (forces are equal and opposite).
 
# Three equal positive charges are placed at the corners of a square of side [math]\displaystyle{a}[/math]. 
  * Find the net force on one of the corner charges. 
  * Use symmetry to simplify the vector addition.
 
# A particle with charge [math]\displaystyle{q = -1.6 \times 10^{-19}\ \text{C}}[/math] experiences an electric force of [math]\displaystyle{3.2 \times 10^{-14}\ \text{N}}[/math] in the +y direction. 
  * (a) What is the electric field at that point (magnitude and direction)? 
  * (b) If the charge were positive instead, what would the force direction be?
 
== What to Review Before an Exam ==


<div class="toccolours mw-collapsible mw-collapsed">
* Determine force direction from a diagram, not just from algebra 
* Practice vector addition of multiple forces 
* Do quick estimates: “If I double the distance, what happens to the force?” 
* Know the difference between:
  * Force between charges (Coulomb’s law) 
  * Electric field 
  * Electric potential energy


====Electric field of a point particle====
====Electric field of a point particle====
Line 432: Line 640:


<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Dipoles====
====Dipoles====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
Line 469: Line 678:
===Week 3===
===Week 3===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Insulators====
====Conductors and Insulators====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Conductivity and Resistivity]]
*[[Insulators]]
*[[Insulators]]
*[[Potential Difference in an Insulator]]
*[[Potential Difference in an Insulator]]
*[[Charged Conductor and Charged Insulator]]
*[[Conductors]]
*[[Charged conductor and charged insulator]]
*[[Polarization of a conductor]]
</div>
</div>
</div>
</div>


<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Conductors====
<div class="mw-collapsible-content">
*[[Conductivity]]
*[[Charge Transfer]]
*[[Resistivity]]
*[[Polarization of a conductor]]
*[[Charged Conductor and Charged Insulator]]
*[[Charged conductor and charged insulator]]
</div>
</div>


<div class="toccolours mw-collapsible mw-collapsed">
====Charging and Discharging====
====Charging and discharging====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Charge Transfer]]
*[[Charge Transfer]]
*[[Electrostatic Discharge]]
*[[Electrostatic Discharge]]
*[[Charged Conductor and Charged Insulator]]
*[[Charged Conductor and Charged Insulator]]
*[[Charged conductor and charged insulator]]
</div>
</div>
</div>
</div>
Line 504: Line 702:
====Field of a charged rod====
====Field of a charged rod====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Charged Rod]]
*[[Field of a Charged Rod|Charged Rod]]
</div>
</div>
</div>
</div>


<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Field of a charged ring/disk/capacitor====
====Field of a charged ring/disk/capacitor====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
Line 591: Line 790:
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Moving charges, electron current, and conventional current====
====Moving charges, electron current, and conventional current====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Moving Point Charge]]
*[[Moving Point Charge]]
A moving point charge creates both electric and magnetic fields. As the charge accelerates or changes position, it alters the surrounding electromagnetic field, which can influence other charges nearby. This is the fundamental concept behind electromagnetic radiation and wave propagation. When many charges move collectively—such as electrons in a wire—this flow is referred to as electric current. This perfectly segues us into the next section of this page.
*[[Current]]
*[[Current]]
Current is typically measured in amperes and represents the rate at which charge flows through a surface. Although electrons carry the charge and move from negative to positive, conventional current is defined in the opposite direction: from positive to negative. This convention dates back to early scientific assumptions and remains standard in circuit diagrams and equations today.
</div>
</div>
</div>
</div>
Line 603: Line 810:
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Magnetic Field of a Long Straight Wire]]
*[[Magnetic Field of a Long Straight Wire]]
*[[Magnetic Field of a Curved Wire]]
</div>
</div>
</div>
</div>


<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Magnetic field of a current-carrying loop====
====Magnetic field of a current-carrying loop====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
Line 637: Line 846:
===Week 8===
===Week 8===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Steady state current====
 
====Circuitry Basics====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Steady State]]
*[[Understanding Fundamentals of Current, Voltage, and Resistance]]
*[[Non Steady State]]
</div>
</div>
</div>
</div>


<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Kirchoff's Laws====
 
====Steady state current====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Kirchoff's Laws]]
*[[Steady State]]
*[[Non Steady State]]
</div>
</div>
</div>
</div>


<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Node rule====
====Kirchoff's Laws====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Loop Rule]]
*[[Node Rule]]
*[[Node Rule]]
====The Main Idea====
*'''Mathematical Model'''
**In this image, you can see what our equations are based on: [[File:noderule.jpg]]
**The node rules can be written as I_total = I_1 + I_2 and I_total = I_3 + I_4. It is also true that I_1 + I_2 = I_3 + I_4.
**However, each of these currents are different because each point has a different resistance. The current is different for each because it is equal to V/R, and in a parallel circuit, the voltage drop across each point is equal.
**An easy way to know when to use node rule is by seeing if there are three connections or more. That is when node rule is most helpful.
*'''Computational Model'''
**In an electric circuit in series, electrons flow from the negative end of a power source, creating a constant current. This current remains consistent at each point in the circuit in series. Sometimes, a circuit is not simply one constant path and may include parts that are in parallel, where the current must travel down two paths such as this:
**[[File:noderule.jpg]]
**In this case, when the current enters a portion of the circuit where the items are in parallel, the total amount of current in must equal the total amount of current out. Therefore, the currents in each branch of the parallel portion must sum up to the amount of current at any other point in series in the circuit.
**People also call this the "Junction Rule"
**Another important point is that this comes from the Kirchoff's Circuit Laws
====Examples====
*'''Simple'''
**Here is an example of a simple circuit problem: [[File:SimpleNodeRule.jpg]]
*'''Medium'''
**Here is an example of a medium circuit problem: [[File:MediumNodeRule.jpg]]
*'''Difficult'''
**Here is an example of a difficult circuit problem: [[File:DifficultNodeRule.jpg]]
====Connectedness====
*'''To other topics:'''
**Many times when you use Node Rule you will also use the Loop Rule. The Loop Rule states that the sum of voltage will equal zero. So using this concept and the Node Rule, you are usually able to figure out missing variables in circuit problems.
*'''To majors:'''
**Node rule is important in all and any major. More specifically, electrical engineering because of the constant need to look, analyze, and understand circuits. However, in general, any major that involves some sort of circuitry will need this. It is the basis to making an effective circuit.
*'''To industrial application:'''
**If you go into robots, engineering, or really anything that involves wires and batteries. You will need to know this.
====History====
*Basic History
**Gustav Kirchoff was the man who discovered this rule while studying electrical currents. He was also the first person to confirm an electrical impulse moves at the speed of light.
====External Resources and Information====
*Sources like Khan Academy and simple YouTube searches can be very helpful in learning more about this topic.
</div>
</div>
</div>
</div>
Line 712: Line 874:
====Electric fields and energy in circuits====
====Electric fields and energy in circuits====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Series circuit]]
*[[Node Rule]]
*[[Loop Rule]]
*[[Electric Potential Difference]]
*[[Electric Potential Difference]]
</div>
</div>
Line 720: Line 879:


<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Macroscopic analysis of circuits====
====Macroscopic analysis of circuits====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
Line 786: Line 946:
*[[Magnetic Force]]
*[[Magnetic Force]]
*[[Magnetic Torque]]
*[[Magnetic Torque]]
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Motional EMF====
<div class="mw-collapsible-content">
*[[Motional Emf]]
*[[Motional Emf using Faraday's Law]]
</div>
</div>
</div>


<div class="toccolours mw-collapsible mw-collapsed">
====Magnetic force====
====Magnetic force====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
Line 920: Line 1,069:
====Classical Physics====
====Classical Physics====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Classical Physics]]
</div>
</div>
</div>
</div>


===Week 2===
[[Category:Which Category did you place this in?]]
 
===Weeks 2 and 3===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Special Relativity====
====Special Relativity and the Lorentz Transformation====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Frame of Reference]]
*[[Frame of Reference]]
*[[Einstein's Theory of Special Relativity]]
*[[Einstein's Theory of Special Relativity]]
*[[Time Dilation]]
*[[Time Dilation]]
*[[Twin Paradox]]
*[[Lorentz Transformations]]
*[[Relativistic Doppler Effect]]
*[[Einstein's Theory of General Relativity]]
*[[Einstein's Theory of General Relativity]]
*[[Albert A. Micheleson & Edward W. Morley]]
*[[Albert A. Micheleson & Edward W. Morley]]
Line 936: Line 1,092:
</div>
</div>


===Week 3===
===Week 4===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Photons====
====Photons and the Photoelectric Effect====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Spontaneous Photon Emission]]
*[[Spontaneous Photon Emission]]
*[[Light Scattering: Why is the Sky Blue]]
*[[Light Scattering]]
*[[Lasers]]
*[[Lasers]]
*[[Electronic Energy Levels and Photons]]
*[[Electronic Energy Levels and Photons]]
*[[Quantum Properties of Light]]
*[[Quantum Properties of Light]]
*[[The Photoelectric Effect]]
</div>
</div>
</div>
</div>


===Week 4===
===Weeks 5 and 6===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Matter Waves====
====Matter Waves and Wave-Particle Duality====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Wave-Particle Duality]]
*[[Wave-Particle Duality]]
*[[Particle in a 1-Dimensional box]]
*[[Heisenberg Uncertainty Principle]]
</div>
</div>
</div>
</div>


===Week 5===
===Week 7===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Wave Mechanics====
====Wave Mechanics====
Line 965: Line 1,124:
*[[Mechanical Waves]]
*[[Mechanical Waves]]
*[[Transverse and Longitudinal Waves]]
*[[Transverse and Longitudinal Waves]]
*[[Fourier Series and Transform]]
</div>
</div>
</div>
</div>


===Week 6===
===Week 8===
<div class="toccolours mw-collapsible mw-collapsed">
====Schrödinger Equation====
<div class="mw-collapsible-content">
*[[The Born Rule]]
*[[Solution for a Single Free Particle]]
*[[Solution for a Single Particle in an Infinite Quantum Well - Darin]]
*[[Solution for a Single Particle in a Semi-Infinite Quantum Well]]
*[[Quantum Harmonic Oscillator]]
*[[Solution for Simple Harmonic Oscillator]]
</div>
</div>
 
===Week 9===
<div class="toccolours mw-collapsible mw-collapsed">
====Quantum Mechanics====
<div class="mw-collapsible-content">
*[[Quantum Tunneling through Potential Barriers]]
</div>
</div>
 
<div class="toccolours mw-collapsible mw-collapsed">
====The Hydrogen Atom====
<div class="mw-collapsible-content">
*[[Quantum Theory]]
*[[Atomic Theory]]
</div>
</div>
 
===Week 10===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Rutherford-Bohr Model====
====Rutherford-Bohr Model====
Line 979: Line 1,168:
</div>
</div>


===Week 7===
===Week 11===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====The Hydrogen Atom====
====Many-Electron Atoms====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Quantum Theory]]
*[[Quantum Theory]]
*[[Atomic Theory]]
*[[Atomic Theory]]
*[[Pauli exclusion principle]]
</div>
</div>
</div>
</div>


===Week 8===
===Week 12===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Many-Electron Atoms====
====The Nucleus====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Quantum Theory]]
*[[Nucleus]]
*[[Atomic Theory]]
*[[Pauli exclusion principle]]
</div>
</div>
</div>
</div>


===Week 9===
===Week 13===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Molecules====
====Molecules====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Molecules]]
*[[Covalent Bonds]]
</div>
</div>
</div>
</div>


===Week 10===
===Week 14===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Statistical Physics====
====Statistical Physics====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Application of Statistics in Physics]]
</div>
</div>
</div>
</div>


===Week 11===
===Week 15===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Condensed Matter Physics====
====Statistical Physics====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Temperature & Entropy]]
</div>
</div>
</div>
</div>


===Week 12===
===Additional Topics===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====The Nucleus====
====Thermodynamics====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Nucleus]]
*[[Maxwell Relations]]
*[[Brownian Motion]]
</div>
</div>
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">


===Week 13===
<div class="toccolours mw-collapsible mw-collapsed">
====Nuclear Physics====
====Nuclear Physics====
<div class="mw-collapsible-content">
<div class="mw-collapsible-content">
*[[Nuclear Fission]]
*[[Nuclear Fission]]
*[[Nuclear Energy from Fission and Fusion]]
*[[Nuclear Energy from Fission and Fusion]]
*[[Radioactive Decay Processes]]
</div>
</div>
</div>
</div>
===Week 14===
<div class="toccolours mw-collapsible mw-collapsed">
<div class="toccolours mw-collapsible mw-collapsed">
====Particle Physics====
====Particle Physics====
Line 1,043: Line 1,234:
*[[String Theory]]
*[[String Theory]]
</div>
</div>
</div>
<div class="toccolours mw-collapsible mw-collapsed">
====Solid-State/Condensed Matter Physics====
<div class="mw-collapsible-content">
*[[What is Condensed Matter]]
*[[Crystalline Structures]]
*[[Electric-Band Structure]]
</div>
</div>
</div>
</div>

Latest revision as of 23:21, 30 November 2025


Georgia Tech Student Wiki for Introductory Physics.

This resource was created so that students can contribute and curate content to help those with limited or no access to a textbook. When reading this website, please correct any errors you may come across. If you read something that isn't clear, please consider revising it for future students!

Looking to make a contribution?

  1. Pick one of the topics from intro physics listed below
  2. Add content to that topic or improve the quality of what is already there.
  3. Need to make a new topic? Edit this page and add it to the list under the appropriate category. Then copy and paste the default Template into your new page and start editing.

Please remember that this is not a textbook and you are not limited to expressing your ideas with only text and equations. Whenever possible embed: pictures, videos, diagrams, simulations, computational models (e.g. Glowscript), and whatever content you think makes learning physics easier for other students.

Source Material

All of the content added to this resource must be in the public domain or similar free resource. If you are unsure about a source, contact the original author for permission. That said, there is a surprisingly large amount of introductory physics content scattered across the web. Here is an incomplete list of intro physics resources (please update as needed).

  • A physics resource written by experts for an expert audience Physics Portal
  • A wiki written for students by a physics expert MSU Physics Wiki
  • A wiki book on modern physics Modern Physics Wiki
  • A collection of 26 volumes of lecture notes by Prof. Wheeler of Reed College [1]
  • The MIT open courseware for intro physics MITOCW Wiki
  • An online concept map of intro physics HyperPhysics
  • Interactive physics simulations PhET
  • OpenStax intro physics textbooks: Vol1, Vol2, Vol3
  • The Open Source Physics project is a collection of online physics resources OSP
  • A resource guide compiled by the AAPT for educators ComPADRE
  • The Feynman lectures on physics are free to read Feynman
  • Final Study Guide for Modern Physics II created by a lab TA Modern Physics II Final Study Guide

Resources


Physics 1

Week 1

GlowScript 101

Vectors and Units

Week 2

Iterative Prediction with a Constant Force

Week 3

Analytic Prediction with a Constant Force

Week 4

Week 5

Week 6

Week 7

Jeet Bhatkar

Energy Principle

The Energy Principle is a fundamental concept in physics that describes the relationship between different forms of energy and their conservation within a system. Understanding the Energy Principle is crucial for analyzing the motion and interactions of objects in various physical scenarios.

Kinetic energy is the energy an object possesses due to its motion.

Potential energy arises from the position of an object relative to its surroundings. Common forms of potential energy include gravitational potential energy and elastic potential energy.

Work and energy are closely related concepts. Work ( 𝑊) done on an object is defined as the force ( 𝐹) applied to the object multiplied by the displacement ( 𝑑) of the object in the direction of the force: The Energy Principle states that the total mechanical energy of a system remains constant if only conservative forces (forces that depend only on the positions of the objects) are acting on the system.

The principle of conservation of energy states that the total energy of an isolated system remains constant over time. In other words, energy cannot be created or destroyed, only transformed from one form to another. This principle is a fundamental concept in physics and has wide-ranging applications in mechanics, thermodynamics, and other branches of science.

Week 8

Work by Non-Constant Forces

Week 9

Week 10

Choice of System

Week 11

Different Models of a System

Week 12

Conservation of Momentum

Week 13

Week 14

Week 15

Physics 2

Week 1

Electric force

Jeet Bhatkar – Fall 2025

Big Idea

Electric force is the interaction between objects that have electric charge. It is:

  • Long-range: acts even when charges do not touch
  • Vector-valued: has magnitude and direction
  • Superposable: forces from many charges add as vectors

At the intro level, the electric force between two point charges is described by Coulomb’s law, the electrostatic analog of the gravitational force between masses.

Key Equations

Coulomb’s Law (magnitude)

[math]\displaystyle{ F = k \dfrac{|q_1 q_2|}{r^2} }[/math]
  • [math]\displaystyle{F}[/math] = magnitude of the electric force
  • [math]\displaystyle{k \approx 8.99 \times 10^9\ \text{N·m}^2/\text{C}^2}[/math]
  • [math]\displaystyle{q_1, q_2}[/math] = charges (C)
  • [math]\displaystyle{r}[/math] = separation between the charges (m)

Coulomb’s Law (vector form)

[math]\displaystyle{ \vec{F}_{2 \leftarrow 1} = k \dfrac{q_1 q_2}{r^2} \,\hat{r}_{2 \leftarrow 1} }[/math]
  • [math]\displaystyle{\vec{F}_{2 \leftarrow 1}}[/math] = force on charge 2 due to charge 1
  • [math]\displaystyle{\hat{r}_{2 \leftarrow 1}}[/math] = unit vector from 1 to 2

Relation to Electric Field

[math]\displaystyle{ \vec{F} = q \vec{E} }[/math]

Once you know [math]\displaystyle{\vec{E}}[/math] at a point, you can find the force on any charge [math]\displaystyle{q}[/math] placed there.

Conceptual Picture

Sign of charges

  • Like charges (both positive or both negative) → repel
  • Unlike charges (one positive, one negative) → attract

Distance dependence

  • Force falls off as [math]\displaystyle{1/r^2}[/math], so doubling the distance makes the force 4 times smaller.

Superposition principle If there are many charges, the net force on a given charge is the vector sum of the forces from each individual charge: [math]\displaystyle{ \vec{F}_\text{net} = \sum_i \vec{F}_i }[/math].

Electric vs. gravitational force

  • Both follow inverse-square laws
  • Gravity is always attractive; electric force can be attractive or repulsive
  • Electric forces are usually much stronger at the particle scale

Worked Example 1: Two Point Charges on a Line

Problem. Two charges are placed on the x-axis:

  • [math]\displaystyle{q_1 = +3.0\ \mu\text{C}}[/math] at [math]\displaystyle{x = 0.00\ \text{m}}[/math]
  • [math]\displaystyle{q_2 = -2.0\ \mu\text{C}}[/math] at [math]\displaystyle{x = 0.40\ \text{m}}[/math]

What is the magnitude and direction of the force on [math]\displaystyle{q_2}[/math]?

Solution (outline).

  1. Distance between charges:

[math]\displaystyle{ r = 0.40\ \text{m} }[/math].

  1. Magnitude using Coulomb’s law:

[math]\displaystyle{ F = k \dfrac{|q_1 q_2|}{r^2} = (8.99 \times 10^9)\,\dfrac{(3.0 \times 10^{-6})(2.0 \times 10^{-6})}{(0.40)^2} }[/math]

  1. Sign and direction:
  • [math]\displaystyle{q_1}[/math] is positive, [math]\displaystyle{q_2}[/math] is negative → force is attractive
  • On [math]\displaystyle{q_2}[/math], the force points toward [math]\displaystyle{q_1}[/math]
  • Since [math]\displaystyle{q_1}[/math] is at smaller x, the force on [math]\displaystyle{q_2}[/math] points in the −x direction

You can finish by computing the numerical value and writing it as a vector, e.g. [math]\displaystyle{\vec{F}_{2 \leftarrow 1} = -F\,\hat{x}}[/math].

Worked Example 2: Superposition with Three Charges

Problem. Three equal charges [math]\displaystyle{q}[/math] are at the corners of an equilateral triangle of side [math]\displaystyle{a}[/math]. What is the net force on one of the charges?

Idea (no full algebra).

  • Each of the other two charges exerts a force of magnitude
 [math]\displaystyle{ F = k \dfrac{q^2}{a^2} }[/math]  
  • The angle between these two forces is [math]\displaystyle{60^\circ}[/math]
  • Use vector addition:
 * Add components along the symmetry axis  
 * Perpendicular components cancel by symmetry  

This shows how symmetry plus superposition simplify the vector addition.

Computational Model (GlowScript)

Below is a simple GlowScript (VPython) model that computes and visualizes the electric force between two point charges in 3D.

You can:

  • Paste this into a new GlowScript Trinket (Python / VPython),
  • Get the embed code from Trinket,
  • Embed that code into this page so it runs directly here.

<syntaxhighlight lang="python"> from vpython import *

  1. constant

k = 8.99e9 # N·m^2/C^2

  1. scene setup

scene.caption = "Drag the red charge to see how the force on the blue charge changes.\n"

  1. charges (positions in meters, charges in coulombs)

q1 = 2e-6 # C (blue, fixed) q2 = -3e-6 # C (red, movable)

charge1 = sphere(pos=vector(-0.5, 0, 0), radius=0.05, color=color.blue) charge2 = sphere(pos=vector(0.5, 0, 0), radius=0.05, color=color.red, make_trail=True)

  1. arrow to show force on q2 due to q1

F_arrow = arrow(pos=charge2.pos, axis=vector(0.2, 0, 0))

def electric_force(q1, q2, r1, r2):

   r_vec = r2 - r1
   r = mag(r_vec)
   if r == 0:
       return vector(0, 0, 0)
   F_mag = k * q1 * q2 / r**2
   return F_mag * norm(r_vec)

dragging = False

def down():

   global dragging
   if scene.mouse.pick is charge2:
       dragging = True

def up():

   global dragging
   dragging = False

scene.bind("mousedown", lambda evt: down()) scene.bind("mouseup", lambda evt: up())

while True:

   rate(60)
   if dragging:
       # move the red charge with the mouse in the x-y plane
       m = scene.mouse.pos
       charge2.pos = vector(m.x, m.y, 0)
   F = electric_force(q1, q2, charge1.pos, charge2.pos)
   # update arrow to show force on q2
   F_arrow.pos = charge2.pos
   # scale arrow length for visibility (purely visual)
   F_arrow.axis = F * 1e7

</syntaxhighlight>

You can extend this model to include more charges or show the net force on a test charge at different locations.

Common Mistakes and How to Avoid Them

  • Forgetting that force is a vector.
 Always draw a diagram and keep track of directions. Use components in 2D/3D.
  • Dropping the absolute value in the magnitude formula.
 [math]\displaystyle{ F = k \dfrac{|q_1 q_2|}{r^2} }[/math] is a positive magnitude. Decide direction separately.
  • Mixing up [math]\displaystyle{r}[/math] and [math]\displaystyle{r^2}[/math].
 The force goes like [math]\displaystyle{1/r^2}[/math], not [math]\displaystyle{1/r}[/math].
  • Using wrong units.
 Convert microcoulombs to coulombs, centimeters to meters, etc.  
 [math]\displaystyle{1\ \mu\text{C} = 1 \times 10^{-6}\ \text{C}}[/math].
  • Trying to memorize instead of understand.
 Focus on inverse-square behavior, sign of charges, and superposition.

Connections to Other Topics

  • Electric Field – Electric force per unit charge is the electric field:
 [math]\displaystyle{ \vec{E} = \dfrac{\vec{F}}{q} }[/math].
  • Potential Energy and Electric Potential – Work done by electric forces leads to electric potential energy and voltage.
  • Lorentz Force – The full force on a moving charge also includes magnetic fields:
 [math]\displaystyle{ \vec{F} = q(\vec{E} + \vec{v} \times \vec{B}) }[/math].  
 This page focuses on the electric part.

Practice Problems

You can add your own numerical values and solve them. Consider including full solutions in a collapsible section.

  1. Two charges of [math]\displaystyle{+2.0\ \mu\text{C}}[/math] and [math]\displaystyle{+5.0\ \mu\text{C}}[/math] are 0.30 m apart.
  * (a) Find the magnitude of the force on each charge.  
  * (b) Is the force attractive or repulsive? Explain.
  1. A charge [math]\displaystyle{q_1 = +4.0\ \mu\text{C}}[/math] is at the origin and [math]\displaystyle{q_2 = -1.0\ \mu\text{C}}[/math] is at [math]\displaystyle{x = 0.20\ \text{m}}[/math].
  * Find the electric force on [math]\displaystyle{q_1}[/math] (magnitude and direction).  
  * Verify that Newton’s third law holds (forces are equal and opposite).
  1. Three equal positive charges are placed at the corners of a square of side [math]\displaystyle{a}[/math].
  * Find the net force on one of the corner charges.  
  * Use symmetry to simplify the vector addition.
  1. A particle with charge [math]\displaystyle{q = -1.6 \times 10^{-19}\ \text{C}}[/math] experiences an electric force of [math]\displaystyle{3.2 \times 10^{-14}\ \text{N}}[/math] in the +y direction.
  * (a) What is the electric field at that point (magnitude and direction)?  
  * (b) If the charge were positive instead, what would the force direction be?

What to Review Before an Exam

  • Determine force direction from a diagram, not just from algebra
  • Practice vector addition of multiple forces
  • Do quick estimates: “If I double the distance, what happens to the force?”
  • Know the difference between:
 * Force between charges (Coulomb’s law)  
 * Electric field  
 * Electric potential energy

Electric field of a point particle

Week 2

Week 3

Week 4

Field of a charged rod

Field of a charged ring/disk/capacitor

Week 5

Potential energy

Sign of a potential difference

Week 6

Electric field and potential in an insulator

Moving charges in a magnetic field

Moving charges, electron current, and conventional current

A moving point charge creates both electric and magnetic fields. As the charge accelerates or changes position, it alters the surrounding electromagnetic field, which can influence other charges nearby. This is the fundamental concept behind electromagnetic radiation and wave propagation. When many charges move collectively—such as electrons in a wire—this flow is referred to as electric current. This perfectly segues us into the next section of this page.

Current is typically measured in amperes and represents the rate at which charge flows through a surface. Although electrons carry the charge and move from negative to positive, conventional current is defined in the opposite direction: from positive to negative. This convention dates back to early scientific assumptions and remains standard in circuit diagrams and equations today.

Week 7

Magnetic field of a current-carrying loop

Magnetic field of a Charged Disk

Atomic structure of magnets

Week 8

Steady state current

Kirchoff's Laws

Electric fields and energy in circuits

Week 9

Electric field and potential in circuits with capacitors

Week 10

Week 12

Week 13

Semiconductors

Week 14

Circuits revisited

Week 15

Electromagnetic Radiation

Sparks in the air

Physics 3

Week 1

Classical Physics

Weeks 2 and 3

Week 4

Weeks 5 and 6

Week 7

Week 8

Week 9

The Hydrogen Atom

Week 10

Week 11

Week 12

The Nucleus

Week 13

Week 14

Week 15

Statistical Physics

Additional Topics