Main Page: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
__NOTOC__ | __NOTOC__ | ||
Welcome to the Georgia Tech Wiki for | Welcome to the Georgia Tech Wiki for Introductory Physics. This resources was created so that students can contribute and curate content to help those with limited or no access to a textbook. When reading this website, please correct any errors you may come across. If you read something that isn't clear, please consider revising it for future students! | ||
Looking to make a contribution? | Looking to make a contribution? | ||
#Pick | #Pick one of the topics from intro physics listed below | ||
#Add that topic | #Add content to that topic or improve the quality of what is already there. | ||
#Need to make a new topic? Edit this page and add it to the list under the appropriate category. Then copy and paste the default [[Template]] into your new page and start editing. | |||
Please remember that this is not a textbook and you are not limited to expressing your ideas with only text and equations. Whenever possible embed: pictures, videos, diagrams, simulations, computational models (e.g. Glowscript), and whatever content you think makes learning physics easier for other students. | Please remember that this is not a textbook and you are not limited to expressing your ideas with only text and equations. Whenever possible embed: pictures, videos, diagrams, simulations, computational models (e.g. Glowscript), and whatever content you think makes learning physics easier for other students. | ||
Line 12: | Line 12: | ||
All of the content added to this resource must be in the public domain or similar free resource. If you are unsure about a source, contact the original author for permission. That said, there is a surprisingly large amount of introductory physics content scattered across the web. Here is an incomplete list of intro physics resources (please update as needed). | All of the content added to this resource must be in the public domain or similar free resource. If you are unsure about a source, contact the original author for permission. That said, there is a surprisingly large amount of introductory physics content scattered across the web. Here is an incomplete list of intro physics resources (please update as needed). | ||
* A physics resource written by experts for an expert audience [https://en.wikipedia.org/wiki/Portal:Physics Physics Portal] | * A physics resource written by experts for an expert audience [https://en.wikipedia.org/wiki/Portal:Physics Physics Portal] | ||
* A wiki written for students by a physics expert [http://p3server.pa.msu.edu/coursewiki/doku.php?id=183_notes MSU Physics Wiki] | |||
* A wiki book on modern physics [https://en.wikibooks.org/wiki/Modern_Physics Modern Physics Wiki] | * A wiki book on modern physics [https://en.wikibooks.org/wiki/Modern_Physics Modern Physics Wiki] | ||
* The MIT open courseware for intro physics [http://ocw.mit.edu/resources/res-8-002-a-wikitextbook-for-introductory-mechanics-fall-2009/index.htm MITOCW Wiki] | * The MIT open courseware for intro physics [http://ocw.mit.edu/resources/res-8-002-a-wikitextbook-for-introductory-mechanics-fall-2009/index.htm MITOCW Wiki] | ||
Line 23: | Line 24: | ||
These are the broad, overarching categories, that we cover in three semester of introductory physics. You can add subcategories as needed but a single topic should direct readers to a page in one of these categories. | These are the broad, overarching categories, that we cover in three semester of introductory physics. You can add subcategories as needed but a single topic should direct readers to a page in one of these categories. | ||
===Properties of Matter=== | ===Properties of Matter=== | ||
Line 1,428: | Line 1,252: | ||
*[[Elementary Particles and Particle Physics Theory]] | *[[Elementary Particles and Particle Physics Theory]] | ||
*[[String Theory]] | *[[String Theory]] | ||
</div> | |||
</div> | |||
===Notable Scientists=== | |||
<div class="toccolours mw-collapsible mw-collapsed"> | |||
<div class="mw-collapsible-content"> | |||
*[[Alexei Alexeyevich Abrikosov]] | |||
*[[Christian Doppler]] | |||
*[[Albert Einstein]] | |||
*[[Ernest Rutherford]] | |||
*[[Joseph Henry]] | |||
*[[Michael Faraday]] | |||
*[[J.J. Thomson]] | |||
*[[James Maxwell]] | |||
*[[Robert Hooke]] | |||
*[[Carl Friedrich Gauss]] | |||
*[[Nikola Tesla]] | |||
*[[Andre Marie Ampere]] | |||
*[[Sir Isaac Newton]] | |||
*[[J. Robert Oppenheimer]] | |||
*[[Oliver Heaviside]] | |||
*[[Rosalind Franklin]] | |||
*[[Enrico Fermi]] | |||
*[[Robert J. Van de Graaff]] | |||
*[[Charles de Coulomb]] | |||
*[[Hans Christian Ørsted]] | |||
*[[Philo Farnsworth]] | |||
*[[Niels Bohr]] | |||
*[[Georg Ohm]] | |||
*[[Leo Szilard]] | |||
*[[Galileo Galilei]] | |||
*[[Gustav Kirchhoff]] | |||
*[[Max Planck]] | |||
*[[Heinrich Hertz]] | |||
*[[Edwin Hall]] | |||
*[[James Watt]] | |||
*[[Count Alessandro Volta]] | |||
*[[Josiah Willard Gibbs]] | |||
*[[Richard Phillips Feynman]] | |||
*[[Sir David Brewster]] | |||
*[[Daniel Bernoulli]] | |||
*[[William Thomson]] | |||
*[[Leonhard Euler]] | |||
*[[Robert Fox Bacher]] | |||
*[[Stephen Hawking]] | |||
*[[Amedeo Avogadro]] | |||
*[[Wilhelm Conrad Roentgen]] | |||
*[[Pierre Laplace]] | |||
*[[Thomas Edison]] | |||
*[[Hendrik Lorentz]] | |||
*[[Jean-Baptiste Biot]] | |||
*[[Lise Meitner]] | |||
*[[Lisa Randall]] | |||
*[[Felix Savart]] | |||
*[[Heinrich Lenz]] | |||
*[[Max Born]] | |||
*[[Archimedes]] | |||
*[[Jean Baptiste Biot]] | |||
*[[Carl Sagan]] | |||
*[[Eugene Wigner]] | |||
*[[Marie Curie]] | |||
*[[Pierre Curie]] | |||
*[[Werner Heisenberg]] | |||
*[[Johannes Diderik van der Waals]] | |||
*[[Louis de Broglie]] | |||
*[[Aristotle]] | |||
*[[Émilie du Châtelet]] | |||
*[[Blaise Pascal]] | |||
*[[Siméon Denis Poisson]] | |||
*[[Benjamin Franklin]] | |||
*[[James Chadwick]] | |||
*[[Henry Cavendish]] | |||
*[[Thomas Young]] | |||
*[[James Prescott Joule]] | |||
*[[John Bardeen]] | |||
*[[Leo Baekeland]] | |||
*[[Alhazen]] | |||
*[[Willebrord Snell]] | |||
*[[Fritz Walther Meissner]] | |||
*[[Johannes Kepler]] | |||
*[[Johann Wilhelm Ritter]] | |||
*[[Philipp Lenard]] | |||
*[[Robert A. Millikan]] | |||
*[[Joseph Louis Gay-Lussac]] | |||
*[[Guglielmo Marconi]] | |||
*[[William Lawrence Bragg]] | |||
*[[Robert Goddard]] | |||
*[[Léon Foucault]] | |||
*[[Henri Poincaré]] | |||
*[[Steven Weinberg]] | |||
*[[Arthur Compton]] | |||
*[[Pythagoras of Samos]] | |||
*[[Subrahmanyan Chandrasekhar]] | |||
*[[Wilhelm Eduard Weber]] | |||
*[[Edmond Becquerel]] | |||
*[[Joseph Rotblat]] | |||
*[[Carl David Anderson]] | |||
*[[Hermann von Helmholtz]] | |||
*[[Nicolas Leonard Sadi Carnot]] | |||
*[[Wallace Carothers]] | |||
*[[David J. Wineland]] | |||
*[[Rudolf Clausius]] | |||
*[[Edward L. Norton]] | |||
*[[Shuji Nakamura]] | |||
*[[Pierre Laplace Pt. 2]] | |||
*[[William B. Shockley]] | |||
*[[Osborne Reynolds]] | |||
*[[Christian Huygens]] | |||
*[[Hans Bethe]] | |||
*[[Erwin Schrodinger]] | |||
*[[Wolfgang Pauli]] | |||
*[[Paul Dirac]] | |||
*[[Bill Nye]] | |||
*[[Arnold Sommerfeld]] | |||
*[[Ernest Lawrence]] | |||
*[[James Franck]] | |||
*[[Chen-Ning Yang]] | |||
*[[Albert A. Michelson & Edward W. Morley]] | |||
*[[George Paget Thomson]] | |||
*[[Konstantin Tsiolkovsky]] | |||
</div> | </div> | ||
</div> | </div> |
Revision as of 14:15, 4 March 2016
Welcome to the Georgia Tech Wiki for Introductory Physics. This resources was created so that students can contribute and curate content to help those with limited or no access to a textbook. When reading this website, please correct any errors you may come across. If you read something that isn't clear, please consider revising it for future students!
Looking to make a contribution?
- Pick one of the topics from intro physics listed below
- Add content to that topic or improve the quality of what is already there.
- Need to make a new topic? Edit this page and add it to the list under the appropriate category. Then copy and paste the default Template into your new page and start editing.
Please remember that this is not a textbook and you are not limited to expressing your ideas with only text and equations. Whenever possible embed: pictures, videos, diagrams, simulations, computational models (e.g. Glowscript), and whatever content you think makes learning physics easier for other students.
Source Material
All of the content added to this resource must be in the public domain or similar free resource. If you are unsure about a source, contact the original author for permission. That said, there is a surprisingly large amount of introductory physics content scattered across the web. Here is an incomplete list of intro physics resources (please update as needed).
- A physics resource written by experts for an expert audience Physics Portal
- A wiki written for students by a physics expert MSU Physics Wiki
- A wiki book on modern physics Modern Physics Wiki
- The MIT open courseware for intro physics MITOCW Wiki
- An online concept map of intro physics HyperPhysics
- Interactive physics simulations PhET
- OpenStax algebra based intro physics textbook College Physics
- The Open Source Physics project is a collection of online physics resources OSP
- A resource guide compiled by the AAPT for educators ComPADRE
Organizing Categories
These are the broad, overarching categories, that we cover in three semester of introductory physics. You can add subcategories as needed but a single topic should direct readers to a page in one of these categories.
Properties of Matter
Contact Interactions
Momentum
Angular Momentum
Energy
Collisions
Collisions are events that happen very frequently in our day-to-day world. In the realm of Physics, a collision is defined as any sort of process in which before and after a short time interval there is little interaction, but during that short time interval there are large interactions. When looking at collisions, it is first important to understand two very important principles: the Momentum Principle and the Energy Principle. Both principles serve use when talking of collisions because they provide a way in which to analyze these collisions. Collisions themselves can be categorized into 3 main different types: elastic collisions, inelastic collisions, maximally inelastic collisions. All 3 collisions will get touched on in more detail further on.
A collision is deemed "elastic" when the internal energy of the objects in the system does not change (in other words, change in internal energy equals 0). Because in an elastic collision no kinetic energy is converted over to internal energy, in any elastic collision Kfinal always equals Kinitial.
A collision is said to be "inelastic" when it is not elastic; therefore, an inelastic collision is an interaction in which some change in internal energy occurs between the colliding objects (in other words, change in internal energy does not equal 0). Examples of such changes that occur between colliding objects include, but are not limited to, things like they get hot, or they vibrate/rotate, or they deform. Because some of the kinetic energy is converted to internal energy during an inelastic collision, Kfinal does not equal Kinitial. There are a few characteristics that one can search for when identifying inelasticity. These indications include things such as:
- Objects stick together after the collision
- An object is in an excited state after the collision
- An object becomes deformed after the collision
- The objects become hotter after the collision
- There exists more vibration or rotation after the collision
Maximally inelastic collisions, also known as "sticking collisions", are the most extreme kinds of inelastic collisions. Just as its secondary name implies, a maximally inelastic collision is one in which the colliding objects stick together creating maximum dissipation. This does not automatically mean that the colliding objects stop dead because the law of conservation of momentum. In a maximally inelastic collision, the remaining kinetic energy is present only because total momentum can't change and must be conserved.
The easiest way to understand this phenomenon is to look at it through an example. In this case, we can analyze it through the common game of billiards. Taking the two, equally massed billiard balls as the system, we can neglect the small frictional force exerted on the balls by the billiard table. The Momentum Principle states that in this head-on collision of billiard balls the total final momentum in the x direction must equal the total initial momentum. However, this alone does not give us the knowledge to know how the momentum will be divided up between the two balls. Considering the law of conservation of energy, we can more accurately depict what will happen. This will also allow for one to identify what kind of collision occurs (elastic, inelastic, or maximally inelastic). It is important to know that head-on collisions of equal masses do not have a definite type of collision associated with it.
Just as with head-on collisions of equal masses, it is easy to understand head-on collisions of unequal masses by viewing it through an example. Let's take for example two balls of unequal masses like a ping-pong ball and a bowling ball. For the purpose of this example (so as to allow for no friction and no other significant external forces), let's imagine these objects collide in outer space inside an orbiting spacecraft. If there were to be a collision between the two, what would one expect to happen? One could expect to see the ping-pong ball collide with the bowling ball and bounce straight back with a very small change of speed. What one might not expect as much is that the bowling ball also moves, just very slowly. Again, this can all be explained through the conservation of momentum and the conservation of energy.
In the world of Physics, a frame of reference is the perspective from which a system is observed. It can be stationary or sometimes it can even be moving at a constant velocity. In some rare cases, the frame of reference moves at an nonconstant velocity and is deemed "noninertial" meaning the basic laws of physics do not apply. Continuing with the trend of examples, pretend you are at a train station observing trains as they pass by. From your stationary frame of reference, you observe that the passenger on the train is moving at the same velocity as the train. However, from a moving frame of reference, say from the eyes of the train conductor, he would view the train passengers as "anchored" to the train.
Experiments that involve scattering are often used to study the structure and behavior of atoms, nuclei, as well as of other small particles. In an experiment like such, a beam of particles collides with other particles. If it is an atomic or nuclear collision, we are unable to observe the curving trajectories inside the tiny region of interaction. Instead, we can only truly observe the trajectories before and after the collision. This is only possible because the particles are at a farther distance apart and have a very weak mutual interaction; this essentially means that the particles are moving almost in a straight line. A good example which demonstrates scattering is the collision between an alpha particle (the nucleus of a helium atom) and the nucleus of a gold atom. One will understand this phenomenon more in depth after first understanding the Rutherford Experiment which will get touched on later.
In England in 1911, a famous experiment was performed by a group of scientists led by Mr. Ernest Rutherford. This experiment, later known as "The Rutherford Experiment", was a tremendous breakthrough for its time because it led to the discovery of the nucleus inside the atom. Rutherford's experiment involved the scattering of a high-speed alpha particle (now known as a helium nuclei - 2 protons and 2 neutrons) as it was shot at a thin gold foil (consisting of a nuclei with 79 protons and 118 neutrons). In the experiment, Rutherford and his team discovered that the velocity of the alpha particles was not high enough to allow the particles to make actual contact with the gold nucleus. Although they never actually made contact, it is still deemed a collision because there exists a sizable force between the alpha particle and the gold nucleus over a very short period of time. In conclusion, we say the alpha particle is "scattered" by its interaction with the nucleus of a gold atom and experiments like such are called "scattering" experiments.
The coefficient of restitution is a measure of the elasticity in a collision. It is the ratio of the differences in velocities before and after the collision. The coefficient is evaluated by taking the difference in the velocities of the colliding objects after the collision and dividing by the difference in the velocities of the colliding objects before the collision.
All of the following information was collected from the Matter and Interactions 4th Edition physics textbook. The book is cited as follows...
Chabay, Ruth W., and Bruce A. Sherwood. "Chapter 10: Collisions." Matter & Interactions. Fourth Edition ed. Wiley, 2015. 383-409. Print.
Fields
- Electric Field of a
- Charge Density
- Superposition Principle
- Electric Potential
- Potential Difference Path Independence
- Potential Difference in a Uniform Field
- Potential Difference of point charge in a non-Uniform Field
- Potential Difference at One Location
- Sign of Potential Difference
- Potential Difference in an Insulator
- Energy Density and Electric Field
- Systems of Charged Objects
- Electric Force
- Polarization
- Charge Motion in Metals
- Charge Transfer
- Magnetic Field
- Combining Electric and Magnetic Forces
Simple Circuits
- Components
- Steady State
- Non Steady State
- Charging and Discharging a Capacitor
- Work and Power In A Circuit
- Thin and Thick Wires
- Node Rule
- Loop Rule
- Resistivity
- Power in a circuit
- Ammeters,Voltmeters,Ohmmeters
- Current
- Ohm's Law
- Series Circuits
- Parallel Circuits
- RC
- Parallel Circuits vs. Series Circuits
- AC vs DC
- Charge in a RC Circuit
- Current in a RC circuit
- Circular Loop of Wire
- Current in a RL Circuit
- Current in an LC Circuit
- RL Circuit
- Feedback
- Transformers (Circuits)
- Resistors and Conductivity
- Semiconductor Devices
- Insulators
- Volt
- Batteries
- Three Prong Circuits
Maxwell's Equations
Radiation
- Producing a Radiative Electric Field
- Sinusoidal Electromagnetic Radiaton
- Lenses
- Energy and Momentum Analysis in Radiation
- Electromagnetic Propagation
- Snell's Law
- Effects of Radiation on Matter
- Light Propagation Through a Medium
- Light Scaterring: Why is the Sky Blue
- Light Refraction: Bending of light
- Cherenkov Radiation
- Rayleigh Effect
- Image Formation
- Nuclear Energy from Fission and Fusion
Sound
Waves
Real Life Applications of Electromagnetic Principles
- Scanning Electron Microscopes
- Maglev Trains
- Spark Plugs
- Metal Detectors
- Speakers
- Radios
- Ampullae of Lorenzini
- Electrocytes
- Cyclotron
- Generator
- Using Capacitors to Measure Fluid Level
- Cyclotron
- Railgun
- Magnetic Resonance Imaging
- Electric Eels
- Windshield Wipers
- Galvanic Cells
- Electrolytic Cells
- Magnetoreception
- Memory Storage Devices
- Electric Pickups
- Inductive Sensors for Traffic Lights
- Multi-limbed Robotics
Optics
Resources
- Commonly used wiki commands Wiki Cheatsheet
- A guide to representing equations in math mode Wiki Math Mode
- A page to keep track of all the physics Constants
- A page for review of Vectors and vector operations
Physics 1
Week 1
Help with VPython
Interactions
Velocity and Momentum
Week 2
Momentum and the Momentum Principle
Iterative Prediction with a Constant Force
Week 3
Analytic Prediction with a Constant Force
Iterative Prediction with a Varying Force
Week 4
Fundamental Interactions
Week 5
Conservation of Momentum
Properties of Matter
Week 6
Identifying Forces
Week 7
Energy Principle
Week 8
Work by Non-Constant Forces
Potential Energy
Week 9
Multiparticle Systems
Week 10
Choice of System
Thermal Energy, Dissipation and Transfer of Energy
Rotational and Vibrational Energy
Week 11
Different Models of a System
Models of Friction
Week 12
Collisions
Week 13
Rotations
Angular Momentum
- Total Angular Momentum
- Translational Angular Momentum
- Rotational Angular Momentum
- The Angular Momentum Principle
- Angular Momentum Compared to Linear Momentum
- Angular Impulse
- Predicting the Position of a Rotating System
- Angular Momentum of Multiparticle Systems
- The Moments of Inertia
- Moment of Inertia for a cylinder
- Right Hand Rule
Week 14
Analyzing Motion with and without Torque
Week 15
Introduction to Quantum Concepts
Physics 2
Week 1
3D Vectors
Electric field
Electric force
Electric field of a point particle
Superposition
Dipoles
Week 2
Interactions of charged objects
Tape experiments
Polarization
Week 3
Insulators
Conductors
Charging and discharging
Week 4
Field of a charged rod
Field of a charged ring/disk/capacitor
Field of a charged sphere
Week 5
Potential energy
Electric potential
Sign of a potential difference
Potential at a single location
Path independence and round trip potential
Week 6
Electric field and potential in an insulator
Moving charges in a magnetic field
Biot-Savart Law
Moving charges, electron current, and conventional current
Week 7
Magnetic field of a wire
Magnetic field of a current-carrying loop
Magnetic dipoles
Atomic structure of magnets
Week 8
Steady state current
Node rule
Electric fields and energy in circuits
Macroscopic analysis of circuits
Week 9
Electric field and potential in circuits with capacitors
Magnetic forces on charges and currents
Electric and magnetic forces
Velocity selector
Week 10
The Hall effect
Motional EMF
Magnetic force
Magnetic torque
Week 12
Gauss's Law
Ampere's Law
Week 13
Semiconductors
Faraday's Law
Maxwell's equations
Week 14
Circuits revisited
Inductors
Week 15
Sparks in the air
Superconductors
Physics 3
Week 1
Classical Physics
Week 2
Special Relativity
Week 3
Photons
Week 4
Matter Waves
Week 5
Wave Mechanics
Week 6
Rutherford-Bohr Model
Week 7
The Hydrogen Atom
Week 8
Many-Electron Atoms
Week 9
Molecules
Week 10
Statistical Physics
Week 11
Condensed Matter Physics
Week 12
The Nucleus
Week 13
Nuclear Physics
Week 14
Particle Physics
Notable Scientists
- Alexei Alexeyevich Abrikosov
- Christian Doppler
- Albert Einstein
- Ernest Rutherford
- Joseph Henry
- Michael Faraday
- J.J. Thomson
- James Maxwell
- Robert Hooke
- Carl Friedrich Gauss
- Nikola Tesla
- Andre Marie Ampere
- Sir Isaac Newton
- J. Robert Oppenheimer
- Oliver Heaviside
- Rosalind Franklin
- Enrico Fermi
- Robert J. Van de Graaff
- Charles de Coulomb
- Hans Christian Ørsted
- Philo Farnsworth
- Niels Bohr
- Georg Ohm
- Leo Szilard
- Galileo Galilei
- Gustav Kirchhoff
- Max Planck
- Heinrich Hertz
- Edwin Hall
- James Watt
- Count Alessandro Volta
- Josiah Willard Gibbs
- Richard Phillips Feynman
- Sir David Brewster
- Daniel Bernoulli
- William Thomson
- Leonhard Euler
- Robert Fox Bacher
- Stephen Hawking
- Amedeo Avogadro
- Wilhelm Conrad Roentgen
- Pierre Laplace
- Thomas Edison
- Hendrik Lorentz
- Jean-Baptiste Biot
- Lise Meitner
- Lisa Randall
- Felix Savart
- Heinrich Lenz
- Max Born
- Archimedes
- Jean Baptiste Biot
- Carl Sagan
- Eugene Wigner
- Marie Curie
- Pierre Curie
- Werner Heisenberg
- Johannes Diderik van der Waals
- Louis de Broglie
- Aristotle
- Émilie du Châtelet
- Blaise Pascal
- Siméon Denis Poisson
- Benjamin Franklin
- James Chadwick
- Henry Cavendish
- Thomas Young
- James Prescott Joule
- John Bardeen
- Leo Baekeland
- Alhazen
- Willebrord Snell
- Fritz Walther Meissner
- Johannes Kepler
- Johann Wilhelm Ritter
- Philipp Lenard
- Robert A. Millikan
- Joseph Louis Gay-Lussac
- Guglielmo Marconi
- William Lawrence Bragg
- Robert Goddard
- Léon Foucault
- Henri Poincaré
- Steven Weinberg
- Arthur Compton
- Pythagoras of Samos
- Subrahmanyan Chandrasekhar
- Wilhelm Eduard Weber
- Edmond Becquerel
- Joseph Rotblat
- Carl David Anderson
- Hermann von Helmholtz
- Nicolas Leonard Sadi Carnot
- Wallace Carothers
- David J. Wineland
- Rudolf Clausius
- Edward L. Norton
- Shuji Nakamura
- Pierre Laplace Pt. 2
- William B. Shockley
- Osborne Reynolds
- Christian Huygens
- Hans Bethe
- Erwin Schrodinger
- Wolfgang Pauli
- Paul Dirac
- Bill Nye
- Arnold Sommerfeld
- Ernest Lawrence
- James Franck
- Chen-Ning Yang
- Albert A. Michelson & Edward W. Morley
- George Paget Thomson
- Konstantin Tsiolkovsky