Main Page: Difference between revisions

From Physics Book
Jump to navigation Jump to search
Line 463: Line 463:
*[[Newton’s Third Law of Motion]]
*[[Newton’s Third Law of Motion]]
*[[Collisions]]
*[[Collisions]]
*[[Collisions 2]]
*[[Elastic Collisions]]
*[[Elastic Collisions]]
*[[Inelastic Collisions]]
*[[Inelastic Collisions]]

Revision as of 07:34, 16 April 2016

Welcome to the Georgia Tech Wiki for Introductory Physics. This resource was created so that students can contribute and curate content to help those with limited or no access to a textbook. When reading this website, please correct any errors you may come across. If you read something that isn't clear, please consider revising it for future students!

Looking to make a contribution?

  1. Pick one of the topics from intro physics listed below
  2. Add content to that topic or improve the quality of what is already there.
  3. Need to make a new topic? Edit this page and add it to the list under the appropriate category. Then copy and paste the default Template into your new page and start editing.

Please remember that this is not a textbook and you are not limited to expressing your ideas with only text and equations. Whenever possible embed: pictures, videos, diagrams, simulations, computational models (e.g. Glowscript), and whatever content you think makes learning physics easier for other students.

Source Material

All of the content added to this resource must be in the public domain or similar free resource. If you are unsure about a source, contact the original author for permission. That said, there is a surprisingly large amount of introductory physics content scattered across the web. Here is an incomplete list of intro physics resources (please update as needed).

  • A physics resource written by experts for an expert audience Physics Portal
  • A wiki written for students by a physics expert MSU Physics Wiki
  • A wiki book on modern physics Modern Physics Wiki
  • The MIT open courseware for intro physics MITOCW Wiki
  • An online concept map of intro physics HyperPhysics
  • Interactive physics simulations PhET
  • OpenStax algebra based intro physics textbook College Physics
  • The Open Source Physics project is a collection of online physics resources OSP
  • A resource guide compiled by the AAPT for educators ComPADRE

Organizing Categories

These are the broad, overarching categories, that we cover in three semester of introductory physics. You can add subcategories as needed but a single topic should direct readers to a page in one of these categories.

Resources

Physics 1

Week 1

Student Content

Vectors and Units
Interactions

Expert Content

Week 2

Student Content

Expert Content


Week 3

Student Content

Analytic Prediction with a Constant Force

Expert Content


Week 4

Student Content

Expert Content


Week 5

Student Content

Conservation of Momentum

Expert Content


Week 6

Student Content

Expert Content


Week 7

Student Content

Expert Content

Week 8

Student Content

Work by Non-Constant Forces

Expert Content


Week 9

Student Content

Expert Content


Week 10

Student Content

Choice of System
Rotational and Vibrational Energy

Expert Content

Week 11

Student Content

Different Models of a System
Models of Friction

Expert Content


Week 12

Student Content

Expert Content


Week 13

Student Content

Expert Content

Week 14

Student Content

Expert Content

Week 15

Student Content


Expert Content


Physics 2

Week 1

Electric force


Electric field of a point particle

Bold text====Superposition====

Week 2

Week 3

Week 4

Field of a charged rod

Field of a charged ring/disk/capacitor

Week 5

Potential energy

Sign of a potential difference

Claimed by Tyler Quill

Week 6

Electric field and potential in an insulator

Moving charges in a magnetic field

Moving charges, electron current, and conventional current

Week 7

Magnetic field of a wire

Magnetic field of a current-carrying loop

Atomic structure of magnets

Week 8

Steady state current

Node rule

Electric fields and energy in circuits

Week 9

Electric field and potential in circuits with capacitors

Electric and magnetic forces

Week 10

The Hall effect is a phenomenon that describes why charged particles collect to one side of a conductor in the presence of a magnetic field. It is used to determine the charge of a mobile particle inside a conductor.

Main Idea

The Hall Effect is a phenomenon that is created when charged particles moving through a conductor are submitted to a magnetic field. The magnetic field pushes the charged particles to one side of the conductor. This causes a buildup of charges on one side of the conductor which creates a polarization of the conductor perpendicular to the current flow. Eventually this charge will stabilize as the mobile charges will resist the magnetic field.

A Mathematical Model

What are the mathematical equations that allow us to model this topic. For example [math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net} }[/math] where p is the momentum of the system and F is the net force from the surroundings.

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

Internet resources on this topic

References

This section contains the the references you used while writing this page


Magnetic force

Week 12

Week 13

Semiconductors

Week 14

Circuits revisited

Week 15

Sparks in the air

Physics 3

Week 1

Classical Physics

Week 2

Week 3

Week 4

Matter Waves

Week 5

Week 6

Week 7

The Hydrogen Atom

Week 8

Week 9

Molecules

Week 10

Statistical Physics

Week 11

Condensed Matter Physics

Week 12

The Nucleus

Week 13

Week 14