Velocity

From Physics Book
Revision as of 13:06, 1 August 2019 by YorickAndeweg (talk | contribs)
Jump to navigation Jump to search

This page defines and describes velocity.

Main Idea

Velocity, denoted by the symbol [math]\displaystyle{ \vec{v} }[/math], is a vector quantity defined as the rate of change of position with respect to time. In calculus terms, it is the time derivative of the position vector. The magnitude of a velocity vector is speed, and the direction of the vector is the direction of travel. Velocity is an instantaneous value, so it may change over time. Several properties in physics, such as momentum and kinetic energy, are functions of velocity. The most commonly used metric unit for velocity is the meter per second (m/s).

A Mathematical Model

Instantaneous velocity [math]\displaystyle{ \vec{v} }[/math] is defined as:

[math]\displaystyle{ \vec{v} = \frac{d\vec{r}}{dt} }[/math]

where [math]\displaystyle{ \vec{r} }[/math] is a position vector and [math]\displaystyle{ t }[/math] is time.

Average Velocity

Since velocity is an instantaneous quantity, it can change over time. Over any given time interval, there is an average velocity value denoted [math]\displaystyle{ \vec{v}_{avg} }[/math]. The average acceleration over an interval of time [math]\displaystyle{ \Delta t }[/math] is given by

[math]\displaystyle{ \vec{v}_{avg} = \frac{\Delta \vec{r}}{\Delta t} }[/math].

As the duration of the time interval [math]\displaystyle{ \Delta t }[/math] becomes very small, the value of the average velocity over that time interval approaches the value of the instantaneous velocity at any point in time within that interval.

Derivative Relationships

Velocity is the time derivative of position:

[math]\displaystyle{ \vec{v}(t) = \frac{d\vec{r}(t)}{dt} }[/math].

Acceleration, in turn, is the time derivative of velocity:

[math]\displaystyle{ \vec{a}(t) = \frac{d\vec{v}(t)}{dt} }[/math]

Integral Relationships

Position is the time integral of velocity:

[math]\displaystyle{ \vec{r}(t) = \int \vec{v}(t) \ dt }[/math].

Velocity is, in turn, the time integral of acceleration:

[math]\displaystyle{ \vec{v}(t) = \int \vec{a}(t) \ dt }[/math].

Kinematic Equations

The kinematic equations can be derived from the derivative and integral relationships between acceleration, velocity, and displacement. For the equations and more information, view the Kinematics page.

In Physics

According to Newton's First Law of Motion, the velocity of an object must remain constant (whether that velocity is zero or nonzero) unless a force acts on it. Newton's Second Law: the Momentum Principle describes how velocity changes over time as a result of forces.

A Computational Model

In VPython simulations of physical systems, the Iterative Prediction algorithm is often used to move objects with specified velocities and evolve those velocities over time. The program below is an example of such a simulation. In this program, the ball's velocity is represented by a purple arrow.

Click here for velocity simulation

Click "view this program" in the top left corner to view the source code.

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness

Velocity is a very simple yet interesting concept in the way that it can be applied to many different parts of physics from something as simple as displacement. Velocity's sheer versatility as a concept and the number of things that can be derived from it, which include acceleration, momentum, and by extension, force and mass. Also because it can be related to force, it can be used, in conjunction with other types of forces to determine many things about systems.

Velocity is also of critical importance in calculating kinetic energy (0.5*m*v^2). Through understanding both the relationship between kinetic energy and velocity, as well as the resulting relationship between kinetic energy and total energy, concepts such as potential spring, gravitational, and electric energies may also be related back to velocity. As Physics 1 deals primarily with motion and predicting future motion, velocity is an absolutely critical tool, as it can often be used to analyze changes of external forces and predict future movement.

Velocity relates to my career aspirations in a rather interesting way. Because I plan on trying to become a trauma doctor, its easy to see the difference between high and low velocity impacts of objects of the same mass. If a low mass object is accelerating at a high enough velocity, the ramifications of its impact with the body could be vastly different than an object with a low velocity.

An industrial application of velocity could be seen in cars and the limits of their engines. The limit to which a car engine can perform can be tested in various ways, one of them being velocity. This could be one reason why you don't see normal cars with speed past around 130, the engine simply can't take it. The knowledge of the limit of a car engine can be tested using velocity to help ensure a safe driving experience for many.

History

See Also

Acceleration

Relative Velocity

Speed and Velocity

External links

The Physics Classroom: Speed and Velocity

HyperPhysics: Average Velocity

YouTube video explaining average vs instantaneous velocity

References

1. Chabay, Ruth W., and Bruce A. Sherwood. Matter and Interactions. Hoboken, NJ: Wiley, 2011. Print.

2. "Velocity." Def. 2. Dictionary.com. N.p., n.d. Web. 29 Nov. 2015.

3. Velocity Expression. Digital image. Physics-Formulas. N.p., n.d. Web. 29 Nov. 2015.

4. Velocity vs Time Graph. Digital image. https://upload.wikimedia.org/wikipedia/commons/a/ae/Velocity-time_graph_example.png. N.p., n.d. Web. 29 Nov. 2015.