Standing Waves

From Physics Book
Revision as of 17:33, 29 November 2015 by Rtrickett3 (talk | contribs)
Jump to navigation Jump to search

Resonance

Resonance is the physical phenomenon in which a system vibrates in response to an applied frequency, but the external force of this frequency interacts with the object in such a way that it causes the system to oscillate with a maximum amplitude due to the specific frequency induced. This property applies to many fields of physics when studying the way an object behaves in certain situations.

Natural Frequencies

When dealing with sound and its interaction with various objects in space, a resonant frequency of a wave is the natural frequency of vibration determined by the physical and chemical properties of said object.The existence of resonance in and of itself depends on the existence of natural frequencies. Objects often have multiple natural vibrating resonant frequencies, and it will pick out those frequencies from a series of excitations, making it an even more useful tool when identifying the properties of an object.

History

One of the most famous visible examples of resonance in history is the disaster at the Tacoma Narrows Bridge in 1940. This bridge, in Tacoma, Washington, spanned the Tacoma Narrows Strait, but it collapsed into the waters of Puget Sound on November 7, 1940. This bridge had such a short lived existence due to resonance. Since its construction, workers observed vertical movement in the suspension bridge on windy days. This brought about the origin of the bridge's nickname: "Galloping Gertie". However, on a particularly windy day, the wind provided the bridge with a periodic vibrating frequency that matched the bridge's natural vibrational frequency, causing the bridge to become a massive oscillating standing wave. This intense oscillation proved too much for the structural integrity of the bridge, and it collapsed. No human lives were lost in the accident, but a black, male cocker spaniel named Tubby passed away from the incident.

Standing Waves

A Visual Model Model

A Mathematical Model

Open Cylinder

Closed Cylinder

Applications

Strings

Tuning Forks

Connectedness

See also

Further reading

External links

References

https://www.grc.nasa.gov/www/k-12/airplane/thermo0.html http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/thereq.html https://www.grc.nasa.gov/www/k-12/airplane/thermo2.html http://www.phys.nthu.edu.tw/~thschang/notes/GP21.pdf http://www.eoearth.org/view/article/153532/

Sound