Solution for a Single Free Particle: Difference between revisions

From Physics Book
Jump to navigation Jump to search
(Introduced the concept of the Schrodinger Equation and the Free Particle)
 
(13 intermediate revisions by the same user not shown)
Line 7: Line 7:
Although the free-particle solution does not have ample practical use in the field of Physics, the methods and conclusions that come from the solution of this system are of great use in a plethora of other quantum systems.
Although the free-particle solution does not have ample practical use in the field of Physics, the methods and conclusions that come from the solution of this system are of great use in a plethora of other quantum systems.


==The General Schrödinger Equation==
The general formulation of the Schrödinger Equation for a time-dependent system of non-relativistic particles in [//en.wikipedia.org/wiki/Bra–ket_notation Bra-Ket notation] is:
<math>i \hbar \frac{d}{d t}\vert\Psi(t)\rangle = \hat H\vert\Psi(t)\rangle</math>
Here <math>i = \sqrt{-1}</math> is the [//en.wikipedia.org/wiki/Imaginary_unit imaginary unit]. <math>\hbar</math> is the [//en.wikipedia.org/wiki/Planck_constant reduced Planck's constant]. <math>\vert\Psi(t)\rangle</math> is the state vector of the quantum system at time <math>t</math>, and <math>\hat H</math> is the [//en.wikipedia.org/wiki/Hamiltonian_(quantum_mechanics) Hamiltonian operator]. For a single particle, the general Schrödinger Equation reduces to a single linear partial differential equation:
<math>
i\hbar\Psi(\vec{r},t) = - \frac{\hbar^2}{2m} \nabla ^2 \Psi(\vec{r},t) + V(\vec{r},t)\Psi(\vec{r},t)
</math>
<math>\Psi(\vec{r},t)</math> becomes the wave function of the particle at position <math>\vec{r}</math> and time <math>t</math>. <math>V(\vec{r},t)</math> is the scalar potential energy of the particle at position <math>\vec{r}</math> and time <math>t</math>.
==Time-independent Potential and Separation of Variables==
The [[Potential Energy | potential energy]] of a system is often not an explicit function of time, that is <math>\frac{\partial V}{\partial t} = 0</math>. Implying that, for such systems, the Schrödinger Equation of a single particle may be written as:
<math>
i\hbar\frac{d}{d t}\Psi(\vec{r},t) = - \frac{\hbar^2}{2m} \nabla ^2 \Psi(\vec{r},t) + V(\vec{r})\Psi(\vec{r},t)
</math>
This, along with the [//en.wikipedia.org/wiki/Spectral_theorem spectral theorem] allows us to assume that the solution for this equation may be obtained through the separation of variables. That is, expressing the wave function as a product of a time-independent and a position-independent function:
<math>
\Psi(\vec{r},t) \equiv \psi(\vec{r})\phi(t) \rightarrow
i\hbar\frac{d}{d t}\psi(\vec{r})\phi(t) = - \frac{\hbar^2}{2m} \nabla ^2 \psi(\vec{r})\phi(t) + V(\vec{r})\psi(\vec{r})\phi(t)
</math>
Expanding the derivatives through the [//en.wikipedia.org/wiki/Chain_rule chain rule] yields:
<math>
i\hbar\psi(\vec{r})\frac{d}{d t}\phi(t) = - \frac{\hbar^2}{2m} \phi(t)\nabla ^2 \psi(\vec{r}) + V(\vec{r})\psi(\vec{r})\phi(t)
</math>
Dividing both sides of the equation by <math>\psi(\vec{r})\phi(t)</math>:
<math>
\frac{i\hbar\frac{d}{d t}\phi(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\nabla ^2 \psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r})
</math>
The left side of this equation is position-independent, and the right side of the equation is time-independent. Therefore, we have successfully [https://en.wikipedia.org/wiki/Separation_of_variables#Partial_differential_equations separated variables], allowing us to solve for <math>\phi(t)</math> and <math>\psi(\vec{r})</math> separatedely. Doing so yields:
<div class="toccolours">
====Time-Independent Schrödinger Equation for 1 Particle====
<math>- \frac {\hbar ^2}{2m} \nabla^2\psi(\vec{r}) + V(\vec{r})\psi(\vec{r})= E \psi(\vec{r})</math>
</div>
<div class="toccolours">
====Space-Independent Schrödinger Equation for 1 Particle====
<math>\frac{d}{d t}\phi(t)= -\frac{i}{\hbar}\left(E + V \right)\phi(t)</math>
</div>
A full derivation of this equations can be found below:
<div class="toccolours mw-collapsible mw-collapsed">
====Derivation of the Time-Independent and Space-Independent Schrödinger Equation====
<div class="mw-collapsible-content">
Start from the Separated Equation for 1 Particle:
<math>
\frac{i\hbar\frac{d}{d t}\phi(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\nabla ^2 \psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r})
</math>
Take the derivative of both sides in respect to time:
<math>
i\hbar\left(
\frac{\ddot{\phi}}{\phi}
-\frac{\dot{\phi}^2}{\phi^2}
\right) = 0
</math>
From now on, for the sake of simplicity, [//en.wikipedia.org/wiki/Notation_for_differentiation#Newton's_notation Newton's Notation] will be used to express derivatives. Simplifying the equation above yields:
<math>
\ddot{\phi}\phi = \dot{\phi}^2
</math>
Treat <math>\phi</math> as an independent variable and define <math>v(\phi) = \dot{\phi}</math>
<math>
\frac{d}{dt}\left(\dot{\phi}\right)\phi = \left( \dot{\phi}\right)^2
\rightarrow
\frac{d}{dt}\left(v(\phi)\right)\phi = v^2(\phi)
</math>
By the chain rule:
<math>
\frac{d\phi}{dt}\frac{dv}{d\phi}\phi = v^2(\phi) \rightarrow
\frac{dv}{d\phi}\phi = v(\phi)
</math>
Re-writting in differential form:
<math>
\frac{dv}{v}=\frac{d\phi}{\phi}
</math>
Integrate both sides yields:
<math>
\int\frac{dv}{v}=\int\frac{d\phi}{\phi}
        \rightarrow \ln{v} = \ln{\phi} + C_1
</math>
Solve for <math>v(\phi)</math> and simplify arbitrary constants:
<math>
v(\phi)=C_1\phi
</math>
Substitute in the definition of <math>v(\phi)</math>:
<math>
\frac{d\phi}{dt} = C_1 \phi
</math>
Rewrite in differential form and integrate:
<math>
\int \frac{d\phi}{\phi} = \int C_1 dt
\rightarrow
\ln{\phi} = C_1 t + C_2
</math>
Solving for <math>\phi</math> and simplifying arbitrary constants yields:
<math>
\phi(t) = C_2 e^{C_1 t}
</math>
Substituting this relation back in the Schrödinger Equation yields:
<math>
C_1 = -i\frac{E+V}{\hbar}
</math>
Therefore:
<math>
\frac{\dot{\phi}}{\phi} = -i\frac{E+V}{\hbar}
</math>
Substituting this relation back in the the Separated Equation for 1 Particle:
<math>
\frac{i\hbar\frac{d}{d t}\phi(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\nabla ^2 \psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r})
\rightarrow
- \frac {\hbar ^2}{2m} \nabla^2\psi(\vec{r}) + V(\vec{r})\psi(\vec{r})= E \psi(\vec{r})
</math>
Which is the Time-Independent Schrödinger Equation.
::
</div>
</div>
==The Free Particle==
The free particle is a special case of the Schrödinger Equation where the potential is null (or constant) everywhere in space:
<math>
V(\vec{r},t) = 0
</math>
This potential is time and space independent, therefore we may use the equations found in the section above:
<math>
\Psi(\vec{r},t) = A\psi(\vec{r})e^{-i\frac{E}{\hbar}t}
</math>
<math>
- \frac {\hbar ^2}{2m} \nabla^2\psi(\vec{r}) = E \psi(\vec{r})
</math>
The latter is a form of the [//en.wikipedia.org/wiki/Helmholtz_equation Helmholtz Equation]. There exists a general solution for an unbounded geometry in [//mathworld.wolfram.com/SphericalCoordinates.html Spherical Coordinates]:
<math>
\psi (r, \theta, \varphi)= \sum_{\ell=0}^\infty \sum_{n=-\ell}^\ell \left( a_{\ell n} j_\ell \left( \frac{\sqrt{2mE}}{\hbar} r \right) + b_{\ell n} y_\ell \left(\frac{\sqrt{2mE}}{\hbar}r\right) \right) Y^n_\ell(\theta,\varphi)
</math>
Here <math>n</math> and <math>\ell</math> are quantum numbers. <math>a_{\ell n}</math> and <math>b_{\ell n}</math> are amplitudes that define the wave packet. <math>j_\ell</math> and <math>y_\ell</math> are the [//en.wikipedia.org/wiki/Bessel_function#Spherical_Bessel_functions spherical Bessel functions], and <math>Y^n_\ell(\theta,\varphi)</math> are the [//en.wikipedia.org/wiki/Spherical_harmonics spherical harmonics].
===General Solution in 1 Dimension===
In one dimension our equation takes the form:
<math>
- \frac {\hbar^2}{2m} \frac{\partial^2\psi(x)}{\partial x^2} = E \psi(x)
</math>
Define <math>k^2 \equiv \frac{2mE}{\hbar^2}</math> and rewrite:
<math>
\frac{\partial^2\psi(x)}{\partial x^2} = -k^2 \psi(x)
</math>
Assume <math>\psi</math> as an independent variable, then define <math>v \equiv \frac{\partial\psi(x)}{\partial x}</math>. Then:
<math>
\frac{\partial v}{\partial x} = -k^2 \psi \rightarrow
\frac{\partial v}{\partial \psi} \frac{\partial \psi}{\partial x}= -k^2 \psi
\rightarrow
\frac{\partial v}{\partial \psi}v = - k^2\psi
</math>
Rewrite in differential form and integrate:
<math>
\int v \partial v = -k^2 \int \psi \partial \psi \rightarrow
\frac{v^2}{2}= -k^2\left(
\frac{\psi^2}{2} + C_1
\right)
</math>
Solving for <math>v</math> and simplifying arbitrary constants:
<math>
v = \pm i k \sqrt{\psi^2 + C_1}
</math>
Substituting the definition of <math>v</math>:
<math>
\frac{\partial\psi(x)}{\partial x} = \pm i k \sqrt{\psi^2 + C_1}
</math>
Re-writing in differential form and integrating:
<math>
\int\frac{\partial\psi}{\sqrt{\psi^2 + C_1}} = \pm i k  \int \partial x
\rightarrow
\ln{\left(\psi + \sqrt{\psi^2+C_1}\right)}= \pm i k x + C_2
</math>
Solving for <math>\psi</math> and simplifying arbitrary constants:
<math>
\psi(x)= C_1 e^{ikx} + C_2 e^{-ikx}
</math>
Notice, however, that since <math>k</math> is a function of the energy, this means a more general solution may be obtained by adding the contribution of many different energy levels:
<math>
\psi(x)= \sum_n A_n e^{i k_n x} + B_n e^{-ik_n x}
</math>
Furthermore it is possible to show that, if <math>\Psi(x,0)</math> is known, then:
<math>
\Psi(x,t) = \sqrt{\frac{m}{2\pi\hbar i}\frac{1}{t}}\int_{-\infty}^{\infty}\psi\left(y\right)e^{-\frac{m}{2\hbar i}\frac{\left(x-y\right)^2}{t}}dy
</math>


==References==
==References==

Latest revision as of 09:51, 17 April 2022

Claimed by Carlos M. Silva (Spring 2022)

The Schrödinger Equation is a linear partial differential equation that governs the wave function of a quantum mechanical system[1]. Similar to Newton's Laws, the Schrödinger Equation is an equation of motion, meaning that it's capable of describing the time-evolution of a position analog of a system.

The free particle is the name given to the system consisting of a single particle subject to a null or constant potential everywhere in space. It's the simplest system to which the Schrödinger Equation has a solution with physical meaning.

Although the free-particle solution does not have ample practical use in the field of Physics, the methods and conclusions that come from the solution of this system are of great use in a plethora of other quantum systems.

The General Schrödinger Equation

The general formulation of the Schrödinger Equation for a time-dependent system of non-relativistic particles in Bra-Ket notation is:

[math]\displaystyle{ i \hbar \frac{d}{d t}\vert\Psi(t)\rangle = \hat H\vert\Psi(t)\rangle }[/math]

Here [math]\displaystyle{ i = \sqrt{-1} }[/math] is the imaginary unit. [math]\displaystyle{ \hbar }[/math] is the reduced Planck's constant. [math]\displaystyle{ \vert\Psi(t)\rangle }[/math] is the state vector of the quantum system at time [math]\displaystyle{ t }[/math], and [math]\displaystyle{ \hat H }[/math] is the Hamiltonian operator. For a single particle, the general Schrödinger Equation reduces to a single linear partial differential equation:

[math]\displaystyle{ i\hbar\Psi(\vec{r},t) = - \frac{\hbar^2}{2m} \nabla ^2 \Psi(\vec{r},t) + V(\vec{r},t)\Psi(\vec{r},t) }[/math]

[math]\displaystyle{ \Psi(\vec{r},t) }[/math] becomes the wave function of the particle at position [math]\displaystyle{ \vec{r} }[/math] and time [math]\displaystyle{ t }[/math]. [math]\displaystyle{ V(\vec{r},t) }[/math] is the scalar potential energy of the particle at position [math]\displaystyle{ \vec{r} }[/math] and time [math]\displaystyle{ t }[/math].

Time-independent Potential and Separation of Variables

The potential energy of a system is often not an explicit function of time, that is [math]\displaystyle{ \frac{\partial V}{\partial t} = 0 }[/math]. Implying that, for such systems, the Schrödinger Equation of a single particle may be written as:

[math]\displaystyle{ i\hbar\frac{d}{d t}\Psi(\vec{r},t) = - \frac{\hbar^2}{2m} \nabla ^2 \Psi(\vec{r},t) + V(\vec{r})\Psi(\vec{r},t) }[/math]

This, along with the spectral theorem allows us to assume that the solution for this equation may be obtained through the separation of variables. That is, expressing the wave function as a product of a time-independent and a position-independent function:

[math]\displaystyle{ \Psi(\vec{r},t) \equiv \psi(\vec{r})\phi(t) \rightarrow i\hbar\frac{d}{d t}\psi(\vec{r})\phi(t) = - \frac{\hbar^2}{2m} \nabla ^2 \psi(\vec{r})\phi(t) + V(\vec{r})\psi(\vec{r})\phi(t) }[/math]

Expanding the derivatives through the chain rule yields:

[math]\displaystyle{ i\hbar\psi(\vec{r})\frac{d}{d t}\phi(t) = - \frac{\hbar^2}{2m} \phi(t)\nabla ^2 \psi(\vec{r}) + V(\vec{r})\psi(\vec{r})\phi(t) }[/math]

Dividing both sides of the equation by [math]\displaystyle{ \psi(\vec{r})\phi(t) }[/math]:

[math]\displaystyle{ \frac{i\hbar\frac{d}{d t}\phi(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\nabla ^2 \psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r}) }[/math]

The left side of this equation is position-independent, and the right side of the equation is time-independent. Therefore, we have successfully separated variables, allowing us to solve for [math]\displaystyle{ \phi(t) }[/math] and [math]\displaystyle{ \psi(\vec{r}) }[/math] separatedely. Doing so yields:

Time-Independent Schrödinger Equation for 1 Particle

[math]\displaystyle{ - \frac {\hbar ^2}{2m} \nabla^2\psi(\vec{r}) + V(\vec{r})\psi(\vec{r})= E \psi(\vec{r}) }[/math]

Space-Independent Schrödinger Equation for 1 Particle

[math]\displaystyle{ \frac{d}{d t}\phi(t)= -\frac{i}{\hbar}\left(E + V \right)\phi(t) }[/math]

A full derivation of this equations can be found below:

Derivation of the Time-Independent and Space-Independent Schrödinger Equation

Start from the Separated Equation for 1 Particle:

[math]\displaystyle{ \frac{i\hbar\frac{d}{d t}\phi(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\nabla ^2 \psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r}) }[/math]

Take the derivative of both sides in respect to time:

[math]\displaystyle{ i\hbar\left( \frac{\ddot{\phi}}{\phi} -\frac{\dot{\phi}^2}{\phi^2} \right) = 0 }[/math]

From now on, for the sake of simplicity, Newton's Notation will be used to express derivatives. Simplifying the equation above yields:

[math]\displaystyle{ \ddot{\phi}\phi = \dot{\phi}^2 }[/math]

Treat [math]\displaystyle{ \phi }[/math] as an independent variable and define [math]\displaystyle{ v(\phi) = \dot{\phi} }[/math]

[math]\displaystyle{ \frac{d}{dt}\left(\dot{\phi}\right)\phi = \left( \dot{\phi}\right)^2 \rightarrow \frac{d}{dt}\left(v(\phi)\right)\phi = v^2(\phi) }[/math]

By the chain rule:

[math]\displaystyle{ \frac{d\phi}{dt}\frac{dv}{d\phi}\phi = v^2(\phi) \rightarrow \frac{dv}{d\phi}\phi = v(\phi) }[/math]

Re-writting in differential form:

[math]\displaystyle{ \frac{dv}{v}=\frac{d\phi}{\phi} }[/math]

Integrate both sides yields:

[math]\displaystyle{ \int\frac{dv}{v}=\int\frac{d\phi}{\phi} \rightarrow \ln{v} = \ln{\phi} + C_1 }[/math]

Solve for [math]\displaystyle{ v(\phi) }[/math] and simplify arbitrary constants:

[math]\displaystyle{ v(\phi)=C_1\phi }[/math]

Substitute in the definition of [math]\displaystyle{ v(\phi) }[/math]:

[math]\displaystyle{ \frac{d\phi}{dt} = C_1 \phi }[/math]

Rewrite in differential form and integrate:

[math]\displaystyle{ \int \frac{d\phi}{\phi} = \int C_1 dt \rightarrow \ln{\phi} = C_1 t + C_2 }[/math]

Solving for [math]\displaystyle{ \phi }[/math] and simplifying arbitrary constants yields:

[math]\displaystyle{ \phi(t) = C_2 e^{C_1 t} }[/math]

Substituting this relation back in the Schrödinger Equation yields:

[math]\displaystyle{ C_1 = -i\frac{E+V}{\hbar} }[/math]

Therefore:

[math]\displaystyle{ \frac{\dot{\phi}}{\phi} = -i\frac{E+V}{\hbar} }[/math]

Substituting this relation back in the the Separated Equation for 1 Particle:

[math]\displaystyle{ \frac{i\hbar\frac{d}{d t}\phi(t)}{\phi(t)} = -\frac{\hbar^2}{2m} \frac{\nabla ^2 \psi(\vec{r})}{\psi(\vec{r})} + V(\vec{r}) \rightarrow - \frac {\hbar ^2}{2m} \nabla^2\psi(\vec{r}) + V(\vec{r})\psi(\vec{r})= E \psi(\vec{r}) }[/math]

Which is the Time-Independent Schrödinger Equation.

The Free Particle

The free particle is a special case of the Schrödinger Equation where the potential is null (or constant) everywhere in space:

[math]\displaystyle{ V(\vec{r},t) = 0 }[/math]

This potential is time and space independent, therefore we may use the equations found in the section above:

[math]\displaystyle{ \Psi(\vec{r},t) = A\psi(\vec{r})e^{-i\frac{E}{\hbar}t} }[/math]

[math]\displaystyle{ - \frac {\hbar ^2}{2m} \nabla^2\psi(\vec{r}) = E \psi(\vec{r}) }[/math]

The latter is a form of the Helmholtz Equation. There exists a general solution for an unbounded geometry in Spherical Coordinates:

[math]\displaystyle{ \psi (r, \theta, \varphi)= \sum_{\ell=0}^\infty \sum_{n=-\ell}^\ell \left( a_{\ell n} j_\ell \left( \frac{\sqrt{2mE}}{\hbar} r \right) + b_{\ell n} y_\ell \left(\frac{\sqrt{2mE}}{\hbar}r\right) \right) Y^n_\ell(\theta,\varphi) }[/math]

Here [math]\displaystyle{ n }[/math] and [math]\displaystyle{ \ell }[/math] are quantum numbers. [math]\displaystyle{ a_{\ell n} }[/math] and [math]\displaystyle{ b_{\ell n} }[/math] are amplitudes that define the wave packet. [math]\displaystyle{ j_\ell }[/math] and [math]\displaystyle{ y_\ell }[/math] are the spherical Bessel functions, and [math]\displaystyle{ Y^n_\ell(\theta,\varphi) }[/math] are the spherical harmonics.

General Solution in 1 Dimension

In one dimension our equation takes the form:

[math]\displaystyle{ - \frac {\hbar^2}{2m} \frac{\partial^2\psi(x)}{\partial x^2} = E \psi(x) }[/math]

Define [math]\displaystyle{ k^2 \equiv \frac{2mE}{\hbar^2} }[/math] and rewrite:

[math]\displaystyle{ \frac{\partial^2\psi(x)}{\partial x^2} = -k^2 \psi(x) }[/math]

Assume [math]\displaystyle{ \psi }[/math] as an independent variable, then define [math]\displaystyle{ v \equiv \frac{\partial\psi(x)}{\partial x} }[/math]. Then:

[math]\displaystyle{ \frac{\partial v}{\partial x} = -k^2 \psi \rightarrow \frac{\partial v}{\partial \psi} \frac{\partial \psi}{\partial x}= -k^2 \psi \rightarrow \frac{\partial v}{\partial \psi}v = - k^2\psi }[/math]

Rewrite in differential form and integrate:

[math]\displaystyle{ \int v \partial v = -k^2 \int \psi \partial \psi \rightarrow \frac{v^2}{2}= -k^2\left( \frac{\psi^2}{2} + C_1 \right) }[/math]

Solving for [math]\displaystyle{ v }[/math] and simplifying arbitrary constants:

[math]\displaystyle{ v = \pm i k \sqrt{\psi^2 + C_1} }[/math]

Substituting the definition of [math]\displaystyle{ v }[/math]:

[math]\displaystyle{ \frac{\partial\psi(x)}{\partial x} = \pm i k \sqrt{\psi^2 + C_1} }[/math]

Re-writing in differential form and integrating:

[math]\displaystyle{ \int\frac{\partial\psi}{\sqrt{\psi^2 + C_1}} = \pm i k \int \partial x \rightarrow \ln{\left(\psi + \sqrt{\psi^2+C_1}\right)}= \pm i k x + C_2 }[/math]

Solving for [math]\displaystyle{ \psi }[/math] and simplifying arbitrary constants:

[math]\displaystyle{ \psi(x)= C_1 e^{ikx} + C_2 e^{-ikx} }[/math]

Notice, however, that since [math]\displaystyle{ k }[/math] is a function of the energy, this means a more general solution may be obtained by adding the contribution of many different energy levels:

[math]\displaystyle{ \psi(x)= \sum_n A_n e^{i k_n x} + B_n e^{-ik_n x} }[/math]

Furthermore it is possible to show that, if [math]\displaystyle{ \Psi(x,0) }[/math] is known, then:

[math]\displaystyle{ \Psi(x,t) = \sqrt{\frac{m}{2\pi\hbar i}\frac{1}{t}}\int_{-\infty}^{\infty}\psi\left(y\right)e^{-\frac{m}{2\hbar i}\frac{\left(x-y\right)^2}{t}}dy }[/math]

References

  1. Griffiths, David J. (2004). Introduction to Quantum Mechanics (2nd ed.). Prentice Hall. ISBN 978-0-13-111892-8.