Charging and Discharging a Capacitor: Difference between revisions

From Physics Book
Jump to navigation Jump to search
Line 21: Line 21:
'''Resistors'''
'''Resistors'''


The amount of resistance in the circuit will determine how long it takes a capacitor to charge or discharge. The less resistance (a light bulb with a thicker filament) the faster the capacitor will charge or discharge. The more resistance (a light bulb with a thin filament) the longer it will take the capacitor to charge or discharge. The thicker filament bulb will be brighter, but won't last as long as a thin filament bulb. You can convince yourself of this by using '''V = IR'''. The larger the resistance the smaller the current.  
The amount of resistance in the circuit will determine how long it takes a capacitor to charge or discharge. The less resistance (a light bulb with a thicker filament) the faster the capacitor will charge or discharge. The more resistance (a light bulb with a thin filament) the longer it will take the capacitor to charge or discharge. The thicker filament bulb will be brighter, but won't last as long as a thin filament bulb. '''V = IR''', The larger the resistance the smaller the current.  


===A Mathematical Model===
===A Mathematical Model===

Revision as of 13:47, 5 December 2015

Claimed by SHoward

The main purpose of having a capacitor in a circuit is to store electric charge. For intro physics you can almost think of them as a battery.

The Main Idea

Discharging a Capacitor

A circuit with a charged capacitor has an electric fringe field inside the wire. This field creates an electron current. The electron current will move opposite the direction of the electric field. However, so long as the electron current is running, the capacitor is being discharged. The electron current is moving negative charges away from the negatively charged plate and towards the positively charged plate. Once the charges even out or are neutralized the electric field will cease to exist. Therefore the current stops running.

In the example where the charged capacitor is connected to a light bulb you can see the electric field is large in the beginning but decreases over time. The electron current is also greater in the beginning and decreases over time. Because of this the light bulb starts out shining brightly but slowly dims and goes out.

Charging a Capacitor

Charging a capacitor isn’t much more difficult than discharging and the same principles still apply. The circuit consists of two batteries, a light bulb, and a capacitor. Essentially, the electron current from the batteries will continue to run until the circuit reaches equilibrium (the capacitor is “full”). Just like when discharging, the bulb starts out bright while the electron current is running, but it slowly dims and goes out as the capacitor charges.

The electron current will flow out the negative end of the battery as usual (conventional current will exit the positive end). Positive charges begin to build up on the right plate and negative charges on the left. The electric field slowly decreases until the net electric field is 0. The fringe field is equal and opposite to the electric field caused by everything else.

If you were to draw a box around the capacitor and label it with positive and negative ends it would look like a battery. It also behaves like a battery. The electron current will continue to flow and the electric field will continue to exist until the potential difference across the capacitor is equal to that of the batteries (sum of emf of all batteries in the circuit).

Resistors

The amount of resistance in the circuit will determine how long it takes a capacitor to charge or discharge. The less resistance (a light bulb with a thicker filament) the faster the capacitor will charge or discharge. The more resistance (a light bulb with a thin filament) the longer it will take the capacitor to charge or discharge. The thicker filament bulb will be brighter, but won't last as long as a thin filament bulb. V = IR, The larger the resistance the smaller the current.

A Mathematical Model

What are the mathematical equations that allow us to model this topic. For example [math]\displaystyle{ {\frac{d\vec{p}}{dt}}_{system} = \vec{F}_{net} }[/math] where p is the momentum of the system and F is the net force from the surroundings.

A Computational Model

Capacitor Charging

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness

Capacitor can be temporary batteries. Capacitors in parallel can continue to supply current to the circuit if the battery runs out. This is interesting because the capacitor gets its charge from being connected to a chemical battery, but the capacitor itself supplies voltage without chemicals.

Capacitors are being researched for applications in electromagnetic armour and electromagnetic weapons. Currently capacitors are used as detonators in nuclear weapons. Capacitors also are largely involved in separations of AC and DC components.

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why. In 1745 Ewald Georg von Kleist was the first to "discover" capacitors in Germany. He connected a generator to glass jars of water and charged them. When he touched the wire they were connected to he shocked himself (discharged the capacitor). At the same time Pieter van Musschenbroek made a similar capacitor and named it the Leyden Jar. When Benjamin Franklin studied the Leyden Jar he determined, among other things, that the charge was stored on the glass. During his studies Franklin was the first to give the capacitor the name battery. Since then batteries have most often been electro-chemical cells of capacitors made of sheets of conducting and dielectric material.

See also

Further reading

  1. Williams, Henry Smith. "A History of Science Volume II, Part VI: The Leyden Jar Discovered"
  2. Keithley, Joseph F. (1999). The Story of Electrical and Magnetic Measurements: From 500 BC to the 1940s

External links

  1. Wikipedia Page "Capacitor"[1]
  2. Khan Academy[2]

References

  1. Chabay, Ruth W., and Bruce A. Sherwood. Matter and Interactions. 3rd ed. Vol. 2. N.p.: John Wiley and Sons, 2002. Print.
  2. "Capacitor." Wikipedia. Wikimedia Foundation, n.d. Web. 05 Dec. 2015.