Kinetic Energy

From Physics Book
Revision as of 03:10, 20 October 2015 by Jmorcos3 (talk | contribs)
Jump to navigation Jump to search

The energy of motion is kinetic energy. --A WORK IN PROGRESS BY JASON MORCOS--

Kinetic Energy

Objects in motion have energy associated with them. This energy of motion is called kinetic energy. Kinetic energy, often abbreviated as KE, is usually given in the standard S.I. units of kilo Joules (kJ). Other types of energy include Rest Mass Energy and Potential Energy.

A Mathematical Model

The relativistic equation for kinetic energy according to Einstein's Theory of Relativity is [math]\displaystyle{ KE=mc²(\frac{1}{\sqrt{1-\frac{v²}{c²}}} -1) }[/math]. However, for cases where an object's velocity is far less than the speed of light ([math]\displaystyle{ 3X10^8 m/s }[/math]), one can use the simplified kinetic energy formula: [math]\displaystyle{ KE=\frac{1}{2}mv^2 }[/math]. In most cases the simplified kinetic energy formula gives a result with only minimal error. However, for near light speed calculations, such as those involving subatomic particles such as electrons, protons, or photons, the relativistic equation must be used. Usually we think of the simplified kinetic energy formula as the way to calculate the kinetic energy of an average object.


By conservation of energy, energy can be converted but it cannot be created nor destroyed. Hence, in an isolated system, energy can be converted back and forth between potential and kinetic energy continuously without loss. This is an excellent visualization of energy that can be demonstrated with vpython. See A Computational Model for this demo.

A Computational Model

How do we visualize or predict using this topic. Consider embedding some vpython code here Teach hands-on with GlowScript

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

Middling

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

http://www.physicsclassroom.com/class/energy/Lesson-1/Kinetic-Energy

References

This section contains the the references you used while writing this page