3-Dimensional Position and Motion

From Physics Book
Revision as of 23:35, 5 December 2015 by Mvitek3 (talk | contribs) (→‎Difficult)
Jump to navigation Jump to search

In order to be able to calculate the effect of forces on an object, you need to first be able to describe its position and motion in three dimensional space. For locating entities, we have position vectors. The change in position over time creates the velocity vector, which describes motion in space. From here, we can apply three dimensional forces.

The Main Idea

Objects, exist, move and accelerate in three dimensions, so we have to describe them in three dimensions as well.


A Mathematical Model

What are the mathematical equations that allow us to model this topic. For example [math]\displaystyle{ \lt {\frac{d\vec{x}}{dt}},{\frac{d\vec{y}}{dt}},{\frac{d\vec{z}}{dt}}\gt }[/math] is the velocity and [math]\displaystyle{ {\frac{d\vec{(velocity)}}{dt}} }[/math] is the acceleration.

A Computational Model

To program the position in VPython for an object, obj, write obj.pos=(xp,yp,zp). Here xp, yp, and zp are the x, y, and z coordinates, respectively, of the object. Velocity and acceleration are programmed similarly with obj.velocity=(xv,yv,zv) and obj.acceleration=(xa,ya,za). The x, y, and z velocity and acceleration values are xv, yv, and zv and xa, ya, and za respectively.

Examples

Here are a few examples

Simple

obj. is at position (0,0,0) meters, moving at a velocity of (-1, 4, 9) meters per second for n seconds. What is obj.'s position now? (0-n,0+4n,0+9n)=(-n,4n,9n)

Middling

obj. is at position (2,5,8) meters. Acceleration is (2, 9, 0) meters per second squared for 5 seconds. new position= (2,5,8)+(2,9,0)*1/2*5^2= (2,5,8)+(25,112.5,0)=(27,117.5,8)

Difficult

obj. starts at position [math]\displaystyle{ (1,2,1) }[/math] meters with initial velocity [math]\displaystyle{ (1,5,2) }[/math] and an acceleration of [math]\displaystyle{ (-1,4,-2) }[/math]. After four seconds, what is the position? [math]\displaystyle{ position= (initial position) + (initial velocity)*(time) + (acceleration)*1/2(time)^2 }[/math]. [math]\displaystyle{ (1,2,1) + 4*(1,5,2) + 4^2/2*(-1,4,-2)= (1,2,1)+(4,20,8)+(-8,32,-16)=(1+4-8,2+20+32,1+8-16)=(-3,54,-7) }[/math]

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

[1]


References

This section contains the the references you used while writing this page


A Mathematical Model To program the position in VPython for an object, obj, write obj.pos=(xp,yp,zp). Here xp, yp, and zp are the x, y, and z coordinates, respectively, of the object. Velocity and acceleration are programmed similarly with obj.velocity=(xv,yv,zv) and obj.acceleration=(xa,ya,za). The x, y, and z velocity and acceleration values are xv, yv, and zv and xa, ya, and za respectively.