Potential Difference Path Independence

From Physics Book
Jump to navigation Jump to search

The potential difference [math]\displaystyle{ \Delta V = V_B - V_A }[/math] between two locations A and B does not depend on the path taken between the locations.

Claimed alanghauser3

The Main Idea

The potential difference between two locations A and B does not depend on the path taken between the locations. A round trip potential difference is always zero.

Potential Difference Equations

In a uniform electric field the potential difference is equal to [math]\displaystyle{ \Delta V = -\vec{E}●\Delta \vec{l} = -(E_x●\Delta x + E_y●\Delta y + E_z●\Delta z }[/math]).

In a nonuniform electric field the potential difference is equal to [math]\displaystyle{ \textstyle\int\limits_{i}^{f}-Edl }[/math]

Examples

Simple Example of Two Different Paths

Calculate the potential difference going from A to C: [math]\displaystyle{ \Delta V = V_C - V_A =  ? }[/math]

Path 1

Error creating thumbnail: sh: /usr/bin/convert: No such file or directory Error code: 127
Angled Path.

Since the electric field inside the capacitor is uniform all along the path we can use the equation for a uniform electric field [math]\displaystyle{ \Delta V = -\vec{E}●\Delta \vec{l} = -(E_x●\Delta x + E_y●\Delta y + E_z●\Delta z }[/math])

The displacement vector: [math]\displaystyle{ \Delta l = \lt \Delta x, \Delta y, \Delta z\gt = \lt (x_1 - 0),(-y_1 - 0)\gt = \lt (x_1,-y_1)\gt }[/math]

The electric field vector is given as: [math]\displaystyle{ \vec{E} = \lt (E_x,0,0)\gt }[/math]

Therefore the potential difference between A and C is: [math]\displaystyle{ \Delta V = -\vec{E}●\Delta \vec{l} = -E_x(x_1) + 0(-y_1) + 0(0) = -E_xx_1 }[/math]

Path 2

Error creating thumbnail: sh: /usr/bin/convert: No such file or directory Error code: 127
Path 2

Along the path from A to B:

The displacement vector: [math]\displaystyle{ \Delta l = \lt \Delta x, \Delta y, \Delta z\gt = \lt (x_1 - 0),(0 - 0)\gt = \lt (x_1,0)\gt }[/math]

The potential difference between A and B is: [math]\displaystyle{ V_B - V_A = -\vec{E}●\Delta \vec{l} = -E_x(x_1) + 0(0) + 0(0) = -E_xx_1 }[/math]

Along the path from B to C:

The displacement vector: [math]\displaystyle{ \Delta l = \lt \Delta x, \Delta y, \Delta z\gt = \lt (x_1 - x_1),(0 - y_1)\gt = \lt (0,-y_1)\gt }[/math]

The potential difference between B and C is: [math]\displaystyle{ V_C - V_B = -\vec{E}●\Delta \vec{l} = -E_x(0) + 0(-y_1) + 0(0) = 0 }[/math]

Therefore the potential difference from A to C is: [math]\displaystyle{ \Delta V = (V_B - V_A) + (V_C - V_B) = -E_xx_1 + 0 = -E_xx_1 }[/math]

Two Different Paths Near a Point Charge

Along a straight path from a point charge Q we know that [math]\displaystyle{ \Delta V = \frac{1}{4 \pi \epsilon_0 }Q(\frac{1}{r_2} - \frac{1}{r_1}) }[/math]

Path 2

Error creating thumbnail: sh: /usr/bin/convert: No such file or directory Error code: 127
Complicated Path

From the initial point [math]\displaystyle{ i }[/math] to point [math]\displaystyle{ A }[/math], [math]\displaystyle{ \vec{E} }[/math] is perpendicular to [math]\displaystyle{ \Delta l }[/math] so [math]\displaystyle{ \Delta V_1 = 0 }[/math]

From [math]\displaystyle{ A }[/math] to [math]\displaystyle{ B }[/math]: [math]\displaystyle{ \Delta V_2 = \frac{1}{4 \pi \epsilon_0 }Q(\frac{1}{r_3} - \frac{1}{r_1}) }[/math]

From [math]\displaystyle{ B }[/math] to [math]\displaystyle{ C }[/math]: [math]\displaystyle{ \Delta V_3 = 0 }[/math], since [math]\displaystyle{ \vec{E} }[/math] is perpendicular to [math]\displaystyle{ \Delta l }[/math].

From C to [math]\displaystyle{ f }[/math]: [math]\displaystyle{ \Delta V_4 = \frac{1}{4 \pi \epsilon_0 }Q(\frac{1}{r_2} - \frac{1}{r_3}) }[/math]

To find [math]\displaystyle{ V_f - V_i }[/math] add up all the [math]\displaystyle{ \Delta V's }[/math]

[math]\displaystyle{ V_f - V_i = \Delta V_1 + \Delta V_2 + \Delta V_3 + \Delta V_4 }[/math]

[math]\displaystyle{ = 0 + \frac{1}{4 \pi \epsilon_0 }Q(\frac{1}{r_3} - \frac{1}{r_1}) + 0 + \frac{1}{4 \pi \epsilon_0 }Q(\frac{1}{r_2} - \frac{1}{r_3}) }[/math]

[math]\displaystyle{ = \frac{1}{4 \pi \epsilon_0 }Q(\frac{1}{r_2} - \frac{1}{r_1}) }[/math]

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

Internet resources on this topic

References

This section contains the the references you used while writing this page