Newton's Third Law of Motion: Difference between revisions

From Physics Book
Jump to navigation Jump to search
Line 4: Line 4:
==Main Idea==
==Main Idea==


Newton’s Third Law of Motion describes a [[File: Law3 f1.gif | thumb | left | 250px |If you push an object with 100N it will push back on you with equal but opposite force.]]push or pull that acts on an object as a result of its interaction with another object. According to this law for every action there is an equal and opposite re-action. This means that for every force  there is a reaction force that is equal in size, but opposite in direction. Meaning that when an object 1 pushes another object 2 then object 1 gets pushed back with equal force but in the opposite direction.  
Newton’s Third Law of Motion describes a push or pull that acts on an object as a result of its interaction with another object. According to this law for every action there is an equal and opposite re-action. This means that for every force  there is a reaction force that is equal in size, but opposite in direction. Meaning that when an object 1 pushes another object 2 then object 1 gets pushed back with equal force but in the opposite direction. [[File: Law3 f1.gif | thumb | left | 250px |If you push an object with 100N it will push back on you with equal but opposite force.]]





Revision as of 01:17, 28 November 2015

claimed by Karan Shah

Newton's Third Law Explained

Main Idea

Newton’s Third Law of Motion describes a push or pull that acts on an object as a result of its interaction with another object. According to this law for every action there is an equal and opposite re-action. This means that for every force there is a reaction force that is equal in size, but opposite in direction. Meaning that when an object 1 pushes another object 2 then object 1 gets pushed back with equal force but in the opposite direction.

If you push an object with 100N it will push back on you with equal but opposite force.


The third law of motion is also referred to as the action-reaction law because both objects are part of a single interaction and neither force can exist without the other. An important concept to remember about Newton's Third Law of Motion is that the two forces are of the same type. For example, when you throw a ball in the sky the Earth exerts a gravitational force on the ball and the ball also exerts a

The canon pushes the canon ball forward and the canon pushes the canon back with equal force.

gravitational force that is equal in magnitude and opposite in direction on the earth. Another example, that can sum up the concept of Newton's Third Law is when you walk. When you push down upon the ground and ground pushes with the same force upward. Similarly, the tires of a car push against the road while the road pushes back on the tires.

Mathematically Formula to describe Newton's Third Law

Examples

Be sure to show all steps in your solution and include diagrams whenever possible

Simple

MIddle

Difficult

Connectedness

  1. How is this topic connected to something that you are interested in?
  2. How is it connected to your major?
  3. Is there an interesting industrial application?

History

Put this idea in historical context. Give the reader the Who, What, When, Where, and Why.

See also

Are there related topics or categories in this wiki resource for the curious reader to explore? How does this topic fit into that context?

Further reading

Books, Articles or other print media on this topic

External links

Internet resources on this topic

References

This section contains the the references you used while writing this page